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I. Introduction



Visual Place Recognition (VPR)
What is VPR?

4

• For an agent (a robot or a vehicle), the ability to recognize the same place despite significant 
changes in appearance and viewpoints. 

Two pictures taken at the same place  
(different seasons, weather and illumination conditions)



2D & 3D Methods for VPR

5

• Based on the data input, there are mainly two approaches to solving VPR, 

• 2D method using images as input  

• 3D method using 3D data (usually point cloud) as input.

Image input Point Cloud input



II. Clarification



General framework for 3D VPR
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Point cloud

Data 
Preprocessing

Algorithom for 
VPR

Output: the place most 
structurally similar to the 
present sence



Clarification
The problem defined as follows:

8

Given a query 3D point cloud denoted as , where 

 
and

 , 

The goal is to retrieve the submap  from the 
database  that is structurally most similar to .

q

AOC(q) ≈ AOC(mi)

|𝒢(q) | = |𝒢(mi) |

m*
ℳ q

mi

q

m1 mi mM… …∈

ℳ
q̄𝒢( . )

m̄i

𝒢( . )

Existing database

AOC: area of coverage : downsampling filter𝒢( . )

Approximately the same in size



Towards this goal, a deep network is devised to learn a 

function   that maps a given downsampled 3D point 

cloud  to a fixed size global descriptor vector 

 such that

, 

if  is structurally similar to  but dissimilar to . 

 is some distance function, e.g. Euclidean distance 
function.

f( . )

p̄ = 𝒢(p)

f(p̄)

d( f(p̄), f(p̄r)) < d( f(p̄), f(p̄s))

p pr ps

d( . )

p p̄
𝒢(p)

f(p̄)

f(p̄r)

f(p̄s)

d( f(p̄), f(p̄ s))

d( f(p̄), f(p̄r ))

Function Definition 

Downsampling

f( p̄)

f( p̄r)

f( p̄s)



Our problem then simplifies to finding the submap  
  

such that its global descriptor vector   gives the 
minimum distance with the global descriptor vector  
from the query , i.e.  

, .  

In practice, this can be done by the nearest neighbor search 
through a list of global descriptors 

   

that can be computed once offline and stored in memory, 
while  is computed online.

m* ∈ ℳ
f(m̄*)

f(q̄)
q

d( f(q̄), f(m̄*)) < d( f(q̄), f(m̄i)) ∀i ≠ *

{ f(m̄i) | i ∈ 1,2,..,M }

f(q̄)

f(q)

f(mi)

f(m*)

d( f(q̄), f(m̄
* ))

d( f(q̄), f(m̄i))

Simplification



III. Literature review



PointNet
Pioneer in Point Cloud Processing

Qi, C. et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation.” 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (2017): 77-85. 12
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then

aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the

classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers

in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets

The architecture of our network (Sec 4.2) is inspired by
the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture

Our full network architecture is visualized in Fig 2,
where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ∗ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

654

PointNet Architecture.



PointNet++
Hierarchical architecture

Qi, C. et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space.” NIPS (2017).
13
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Figure 2: Illustration of our hierarchical feature learning architecture and its application for set
segmentation and classification using points in 2D Euclidean space as an example. Single scale point
grouping is visualized here. For details on density adaptive grouping, see Fig. 3

where � and h are usually multi-layer perceptron (MLP) networks.

The set function f in Eq. 1 is invariant to input point permutations and can arbitrarily approximate any
continuous set function [20]. Note that the response of h can be interpreted as the spatial encoding of
a point (see [20] for details).

PointNet achieved impressive performance on a few benchmarks. However, it lacks the ability to
capture local context at different scales. We will introduce a hierarchical feature learning framework
in the next section to resolve the limitation.

3.2 Hierarchical Point Set Feature Learning

While PointNet uses a single max pooling operation to aggregate the whole point set, our new
architecture builds a hierarchical grouping of points and progressively abstract larger and larger local
regions along the hierarchy.

Our hierarchical structure is composed by a number of set abstraction levels (Fig. 2). At each level, a
set of points is processed and abstracted to produce a new set with fewer elements. The set abstraction
level is made of three key layers: Sampling layer, Grouping layer and PointNet layer. The Sampling
layer selects a set of points from input points, which defines the centroids of local regions. Grouping
layer then constructs local region sets by finding “neighboring” points around the centroids. PointNet
layer uses a mini-PointNet to encode local region patterns into feature vectors.

A set abstraction level takes an N ⇥ (d + C) matrix as input that is from N points with d-dim
coordinates and C-dim point feature. It outputs an N 0 ⇥ (d+ C 0) matrix of N 0 subsampled points
with d-dim coordinates and new C 0-dim feature vectors summarizing local context. We introduce the
layers of a set abstraction level in the following paragraphs.
Sampling layer. Given input points {x1, x2, ..., xn}, we use iterative farthest point sampling (FPS)
to choose a subset of points {xi1 , xi2 , ..., xim}, such that xij is the most distant point (in metric
distance) from the set {xi1 , xi2 , ..., xij�1} with regard to the rest points. Compared with random
sampling, it has better coverage of the entire point set given the same number of centroids. In contrast
to CNNs that scan the vector space agnostic of data distribution, our sampling strategy generates
receptive fields in a data dependent manner.
Grouping layer. The input to this layer is a point set of size N ⇥ (d+ C) and the coordinates of
a set of centroids of size N 0 ⇥ d. The output are groups of point sets of size N 0 ⇥K ⇥ (d + C),
where each group corresponds to a local region and K is the number of points in the neighborhood of
centroid points. Note that K varies across groups but the succeeding PointNet layer is able to convert
flexible number of points into a fixed length local region feature vector.

In convolutional neural networks, a local region of a pixel consists of pixels with array indices within
certain Manhattan distance (kernel size) of the pixel. In a point set sampled from a metric space, the
neighborhood of a point is defined by metric distance.

Ball query finds all points that are within a radius to the query point (an upper limit of K is set in
implementation). An alternative range query is K nearest neighbor (kNN) search which finds a fixed

3

PointNet++: Hierarchical feature learning architecture and its application.



DGCNN
Better extract local geometric features

Wang, Yue et al. “Dynamic Graph CNN for Learning on Point Clouds.” ACM Transactions on Graphics (TOG) 38 (2019): 1 - 12.
14
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NetVLAD
A Backbone for 2D VPR

Arandjelović, Relja et al. “NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.” IEEE Transactions on Pattern Analysis and 
Machine Intelligence 40 (2018): 1437-1451. 16
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Figure 2. CNN architecture with the NetVLAD layer. The layer can be implemented using standard CNN layers (convolutions,
softmax, L2-normalization) and one easy-to-implement aggregation layer to perform aggregation in equation (4) (“VLAD core”), joined
up in a directed acyclic graph. Parameters are shown in brackets.

other cluster centres. āk(xi) ranges between 0 and 1, with
the highest weight assigned to the closest cluster centre. ↵ is
a parameter (positive constant) that controls the decay of the
response with the magnitude of the distance. Note that for
↵ ! +1 this setup replicates the original VLAD exactly
as āk(xi) for the closest cluster would be 1 and 0 otherwise.

By expanding the squares in (2), it is easy to see that
the term e

�↵kxik2

cancels between the numerator and the
denominator resulting in a soft-assignment of the following
form

āk(xi) =
e
wT

k xi+bk

P
k0 e

wT
k0xi+bk0

, (3)

where vector wk = 2↵ck and scalar bk = �↵kckk2. The
final form of the NetVLAD layer is obtained by plugging
the soft-assignment (3) into the VLAD descriptor (1) re-
sulting in

V (j, k) =
NX

i=1

e
wT

k xi+bk

P
k0 e

wT
k0xi+bk0

(xi(j)� ck(j)) , (4)

where {wk}, {bk} and {ck} are sets of trainable parameters
for each cluster k. Similarly to the original VLAD descrip-
tor, the NetVLAD layer aggregates the first order statistics
of residuals (xi � ck) in different parts of the descriptor
space weighted by the soft-assignment āk(xi) of descrip-
tor xi to cluster k. Note however, that the NetVLAD layer
has three independent sets of parameters {wk}, {bk} and
{ck}, compared to just {ck} of the original VLAD. This
enables greater flexibility than the original VLAD, as ex-
plained in figure 3. Decoupling {wk, bk} from {ck} has
been proposed in [3] as a means to adapt the VLAD to a
new dataset. All parameters of NetVLAD are learnt for the
specific task in an end-to-end manner.

As illustrated in figure 2 the NetVLAD layer can be vi-
sualized as a meta-layer that is further decomposed into ba-
sic CNN layers connected up in a directed acyclic graph.
First, note that the first term in eq. (4) is a soft-max func-
tion �k(z) = exp(zk)P

k0 exp(zk0 )
. Therefore, the soft-assignment

of the input array of descriptors xi into K clusters can be
seen as a two step process: (i) a convolution with a set of K
filters {wk} that have spatial support 1⇥1 and biases {bk},

Figure 3. Benefits of supervised VLAD. Red and green cir-
cles are local descriptors from two different images, assigned to
the same cluster (Voronoi cell). Under the VLAD encoding, their
contribution to the similarity score between the two images is the
scalar product (as final VLAD vectors are L2-normalized) between
the corresponding residuals, where a residual vector is computed
as the difference between the descriptor and the cluster’s anchor
point. The anchor point ck can be interpreted as the origin of a
new coordinate system local to the the specific cluster k. In stan-
dard VLAD, the anchor is chosen as the cluster centre (⇥) in order
to evenly distribute the residuals across the database. However, in
a supervised setting where the two descriptors are known to be-
long to images which should not match, it is possible to learn a
better anchor (?) which causes the scalar product between the new
residuals to be small.

producing the output sk(xi) = wT
k xi + bk; (ii) the convo-

lution output is then passed through the soft-max function
�k to obtain the final soft-assignment āk(xi) that weights
the different terms in the aggregation layer that implements
eq. (4). The output after normalization is a (K ⇥ D) ⇥ 1
descriptor.

Relations to other methods. Other works have proposed to
pool CNN activations using VLAD or Fisher Vectors (FV)
[13, 22], but do not learn the VLAD/FV parameters nor the
input descriptors. The most related method to ours is the
one of Sydorov et al. [76], which proposes to learn FV pa-
rameters jointly with an SVM for the end classification ob-
jective. However, in their work it is not possible to learn the
input descriptors as they are hand-engineered (SIFT), while
our VLAD layer is easily pluggable into any CNN archi-
tecture as it is amenable to backpropagation. “Fisher Net-
works” [72] stack Fisher Vector layers on top of each other,
but the system is not trained end-to-end, only hand-crafted
features are used, and the layers are trained greedily in a
bottom-up fashion. Finally, our architecture is also related
to bilinear networks [42], recently developed for a different

4

CNN architecture with the NetVLAD layer.



Aggregate local descriptors
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Figure 2. CNN architecture with the NetVLAD layer. The layer can be implemented using standard CNN layers (convolutions,
softmax, L2-normalization) and one easy-to-implement aggregation layer to perform aggregation in equation (4) (“VLAD core”), joined
up in a directed acyclic graph. Parameters are shown in brackets.

other cluster centres. āk(xi) ranges between 0 and 1, with
the highest weight assigned to the closest cluster centre. ↵ is
a parameter (positive constant) that controls the decay of the
response with the magnitude of the distance. Note that for
↵ ! +1 this setup replicates the original VLAD exactly
as āk(xi) for the closest cluster would be 1 and 0 otherwise.

By expanding the squares in (2), it is easy to see that
the term e

�↵kxik2

cancels between the numerator and the
denominator resulting in a soft-assignment of the following
form

āk(xi) =
e
wT

k xi+bk

P
k0 e

wT
k0xi+bk0

, (3)

where vector wk = 2↵ck and scalar bk = �↵kckk2. The
final form of the NetVLAD layer is obtained by plugging
the soft-assignment (3) into the VLAD descriptor (1) re-
sulting in

V (j, k) =
NX

i=1

e
wT

k xi+bk

P
k0 e

wT
k0xi+bk0

(xi(j)� ck(j)) , (4)

where {wk}, {bk} and {ck} are sets of trainable parameters
for each cluster k. Similarly to the original VLAD descrip-
tor, the NetVLAD layer aggregates the first order statistics
of residuals (xi � ck) in different parts of the descriptor
space weighted by the soft-assignment āk(xi) of descrip-
tor xi to cluster k. Note however, that the NetVLAD layer
has three independent sets of parameters {wk}, {bk} and
{ck}, compared to just {ck} of the original VLAD. This
enables greater flexibility than the original VLAD, as ex-
plained in figure 3. Decoupling {wk, bk} from {ck} has
been proposed in [3] as a means to adapt the VLAD to a
new dataset. All parameters of NetVLAD are learnt for the
specific task in an end-to-end manner.

As illustrated in figure 2 the NetVLAD layer can be vi-
sualized as a meta-layer that is further decomposed into ba-
sic CNN layers connected up in a directed acyclic graph.
First, note that the first term in eq. (4) is a soft-max func-
tion �k(z) = exp(zk)P

k0 exp(zk0 )
. Therefore, the soft-assignment

of the input array of descriptors xi into K clusters can be
seen as a two step process: (i) a convolution with a set of K
filters {wk} that have spatial support 1⇥1 and biases {bk},

Figure 3. Benefits of supervised VLAD. Red and green cir-
cles are local descriptors from two different images, assigned to
the same cluster (Voronoi cell). Under the VLAD encoding, their
contribution to the similarity score between the two images is the
scalar product (as final VLAD vectors are L2-normalized) between
the corresponding residuals, where a residual vector is computed
as the difference between the descriptor and the cluster’s anchor
point. The anchor point ck can be interpreted as the origin of a
new coordinate system local to the the specific cluster k. In stan-
dard VLAD, the anchor is chosen as the cluster centre (⇥) in order
to evenly distribute the residuals across the database. However, in
a supervised setting where the two descriptors are known to be-
long to images which should not match, it is possible to learn a
better anchor (?) which causes the scalar product between the new
residuals to be small.

producing the output sk(xi) = wT
k xi + bk; (ii) the convo-

lution output is then passed through the soft-max function
�k to obtain the final soft-assignment āk(xi) that weights
the different terms in the aggregation layer that implements
eq. (4). The output after normalization is a (K ⇥ D) ⇥ 1
descriptor.

Relations to other methods. Other works have proposed to
pool CNN activations using VLAD or Fisher Vectors (FV)
[13, 22], but do not learn the VLAD/FV parameters nor the
input descriptors. The most related method to ours is the
one of Sydorov et al. [76], which proposes to learn FV pa-
rameters jointly with an SVM for the end classification ob-
jective. However, in their work it is not possible to learn the
input descriptors as they are hand-engineered (SIFT), while
our VLAD layer is easily pluggable into any CNN archi-
tecture as it is amenable to backpropagation. “Fisher Net-
works” [72] stack Fisher Vector layers on top of each other,
but the system is not trained end-to-end, only hand-crafted
features are used, and the layers are trained greedily in a
bottom-up fashion. Finally, our architecture is also related
to bilinear networks [42], recently developed for a different

4



Chronological overview of 3D VPR
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2018 2019 2020 2021

PointNetVLAD 
(Uy et al.)

PCAN 
(Zhao et al.)

MinkLoc3D 
(Komorowski et al.)

NDT-Transformer 
(Zhou et al.)

DH3D 
(Du et al.)

LPD-Net 
(Liu et al.)

SOE-Net 
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EPC-Net 
(Hui et al.)

PPT-Net 
(Hui et al.)



PointNetVLAD
Pioneer of 3D VPR

Uy, Mikaela Angelina and Gim Hee Lee. “PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition.” 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (2018): 4470-4479. 19

Network Architecture of PointNetVLAD.



PointNetVLAD Backbone
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LPD-Net
Handcrafted features, coordinate & feature space

Liu, Zhe et al. “LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis.” 2019 IEEE/CVF International 
Conference on Computer Vision (ICCV) (2019): 2831-2840. 22
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PCAN
The first one to introduce the attention mechanism

Zhang, Wenxiao and Chunxia Xiao. “PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval.” 2019 IEEE/
CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019): 12428-12437. 23
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MinkLoc3D
A novel backbone for 3D VPR

Komorowski, Jacek. “MinkLoc3D: Point Cloud Based Large-Scale Place Recognition.” 2021 IEEE Winter Conference on Applications of Computer 
Vision (WACV) (2021): 1789-1798. 24

DH3D [9] is a recent 6DoF relocalization method oper-
ating on 3D point clouds. It unifies global place recogni-
tion and local 6DoF pose refinement by inferring local and
global 3D descriptors in a single pass through the network.
The local feature extraction module uses Flex Convolu-
tion (FlexConv) [13] and Squeeze-and-Excitation (SE) [15]
blocks to fuse multi-level spatial contextual information
and channel-wise feature correlations into local descrip-
tors. NetVLAD [2] layer aggregates attention-weighted lo-
cal features into a global point cloud descriptor.

Deep metric learning. Deep metric learning [20] uses
deep neural networks to compute a non-linear mapping
from a high dimensional data point space to a low-
dimensional Euclidean space, known as a representation or
embedding space. The learned mapping preserves semantic
similarity between objects. This technique is widely used
in many recognition tasks in computer vision domain, such
as pedestrian re-identification [14] and image retrieval [17].
Early deep metric learning methods use a Siamese archi-
tecture trained with a contrastive loss [3]. Latter methods
propose more complex loss functions, such as triplet [14]
or quadruplet [5] loss. Significant attention is put to a
selection of an effective sampling scheme to choose in-
formative training samples, so called hard negatives min-
ing [40]. One of the most popular schemes is batch hard

negative mining proposed in [14], which constructs training
triplets by selecting the hardest positive and negative exam-
ples within each mini-batch. In the last few years a number
of more sophisticated loss function formulations and sam-
pling schemes was proposed [40, 38, 4]. However, recent
works [26, 31] suggest that their advantage over classic con-
trastive or triplet margin loss is moderate at best. Based on
these findings we choose triplet margin loss when training
our network.

3. MinkLoc3D: global point cloud descriptor
for place recognition

Our goal is to compute a discriminative and generaliz-
able global descriptor from the input point cloud given as
an unordered set of 3D coordinates. This section describes
the proposed architecture and training process of the net-
work computing such descriptor.

3.1. Network architecture
Our network has a very simple architecture shown in

Fig. 2, yet it proved to be more effective and efficient than
state-of-the-art methods on standard benchmarks. It con-
sists of two parts: local feature extraction network and
generalized-mean (GeM) pooling [30] layer. Input point
cloud P = {(xi, yi, zi)}, in the form of a set of 3D point co-
ordinates, is first quantized into a single channel sparse ten-

Conv3

Conv2

Conv1

Conv0

1x1Conv2

1x1Conv3

TConv3

+

Local feature extraction

4/64

1/32

2/32

8/64 8/256

4/256

Point cloud

Sparse
quantize

Global descriptor
256 dimensions

GeM

Sparse
tensor

Figure 2. MinkLoc3D architecture. The input point cloud is quan-
tized into a sparse, single channel, 3D tensor. Local features are
extracted using a 3D Feature Pyramid Network [18] architecture.
Generalized-mean (GeM) [30] pooling produces a global point
cloud descriptor. Numbers in local feature extraction module (e.g.
1/32) denote a stride and number of channels of a feature map pro-
duced by each block.

sor P̂ = {(x̂i, ŷi, ẑi, 1)}. The values of this single channel
are set to one for non-empty voxels. The sparse tensor if fed
to the local feature extraction network, which produces a
sparse 3D feature map F̂ =

n⇣
x̂j , ŷj , ẑj , f

(1)
j , . . . , f (c)

j

⌘o
,

where c is a feature dimensionality (256 in our experi-
ments), x̂j , ŷj , ẑj quantized coordinates and f (1)

j , . . . , f (c)
j

features of j-th feature map element. The sparse 3D feature
map F̂ is pooled using a generalized-mean (GeM) pool-
ing [30] layer, which produces a global descriptor vector
g. GeM is generalization of a global max pooling and
global average pooling operators and is defined as: g(k) =
⇣

1
n

P
j=1...n

⇣
f (k)
j

⌘p⌘ 1
p

, where g(k) is k-th element of the
global descriptor vector g, n is a size (number of non-zero
elements) in the sparse local feature map F̂ , f (k)

j is k-th fea-
ture of the j-th local feature map element and p is a learn-
able pooling parameter.

The design of the local feature extraction network is in-
spired by MinkowskiNet [7] sparse convolutional network
architecture, and Feature Pyramid Network [18] design pat-
tern. Bottom-up part part of the network contains four con-
volutional blocks producing sparse 3D feature maps with
decreasing spatial resolution and increasing receptive field.
The top-down part contains a transposed convolution gen-
erating an upsampled feature map. Upsampled feature map
is concatenated with the skipped features from the corre-
sponding layer of the bottom-up pass using a lateral connec-
tion. Such design is intended to produce a feature map with
relatively high spatial resolution and large receptive field.
Our initial experiments proved its advantage over a simple
convolutional architecture without top-down processing.

Tab. 1 shows details of each convolutional block in a lo-

MinkLoc3D Architecture

MinkowskiEngine:  
auto-differentiation library 

for sparse tensors Generalized-Mean pooling 
not NetVLAD!!



SOE-Net
Introduce self-attention & a new loss function

Xia, Yan et al. “SOE-Net: A Self-Attention and Orientation Encoding Network for Point Cloud based Place Recognition.” 2021 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR) (2021): 11343-11352. 25
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A New Loss Function for VPR:  
                           Hardest Positive Hardest Negative quadruplet loss  (HPHN loss)

26

LHPHN = [ f (δa) − f (δhp)
2

2
− dhn + γ]

+



EPC-Net
ProxyConv & grouped VLAD

Hui, Le et al. “Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition.” IEEE Transactions on Image Processing 31 (2022): 
1258-1270. 27

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

n×(64*m)n×1024

n×64 n×64 n×64

Grouped VLAD Network

point cloud

global descriptor

n×3

soft-assign.

n×n

256
K×d(K×d)/G

FC
Conv (w, b)

1×1×d×K

VLAD core (c)Aggregation

softmax

L2
normalization

L2
normalization

GFC Layer

C

Proxy Point Convolutional Neural Network

MLP MLPMLPMLP MLPMLP

MLP

spatial adjacent matrix

ProxyConv 1 ProxyConv 2 ProxyConv m

concat

Fig. 2. The architecture of our efficient point cloud learning network (EPC-Net) for point cloud based place recognition. Given the raw point clouds, we
first compute the spatial adjacent matrix in the spatial space. Then, we use the proxy point convolutional neural network (PPCNN) to extract multi-scale
local geometric features. After that, we concatenate the multi-scale feature maps of each module to obtain a (64*m)-dimensional feature map. Next, we use
multi-layer perception (MLP) to map it into a 1024-dimensional feature space. Finally, we use the proposed grouped VLAD network (G-VLAD) to obtain
a 256-dimensional global descriptor, in which the grouped fully connected (GFC) layer is used to reduce the number of parameters. Note that the spatial
adjacent matrix only needs to be calculated once in the entire network.

only once. The memory consumption ratio of the ProxyConv
and EdgeConv modules is written as:

R(PC,EC) =
m ⇤ n ⇤ 5d+ n ⇤ n

m ⇤ n ⇤ (2 + 4k) ⇤ d

=
5

2 + 4k
+

n

m ⇤ (2 + 4k) ⇤ d

(5)

where PC and EC represent the ProxyConv and the EdgeConv,
respectively. Generally, the values of n, k, d and m are
4096, 20, 64, and 4, respectively. The ratio of Eq. (5) is
about 25%. Moreover, thanks to the spatial adjacent matrix,
the memory consumption of the ProxyConv is independent
of the number of neighbors. However, as the number of
neighbors increases, the memory consumption of EdgeConv
also increases. Moreover, it can be seen from Eq. (1) and
Eq. (4), our ProxyConv has smaller number of parameters.

To construct the proxy point convolutional neural network
(PPCNN), we directly stack the ProxyConv module. As shown
in the top part of Fig. 2, we provide the detailed structure of
our PPCNN. Since we construct the spatial adjacent matrix
in the spatial space, all modules can share the same spa-
tial adjacent matrix. Therefore, the spatial adjacent matrix
only needs to be calculated once in the entire PPCNN. By
stacking the ProxyConv modules, we can obtain multi-scale
local features. Thanks to our ProxyConv module, our proxy
point convolutional neural network can have low memory
consumption and short inference time.

As aforementioned, we use one proxy point to replace the k-
nearest neighbors. Although it seems to lose some local infor-
mation, we want to emphasize memory consumption and infer-
ence time in point cloud based place recognition. Surprisingly,
compared with the original EdgeConv, by using proxy points,
we can approximately reduce 75% of memory consumption.
Likewise, due to the reduction of memory computation and
feature map size, the inference time of the network is also
reduced. In addition, the proxy point is generated by averaging

the point features of the local neighborhood. In other words,
the proxy point is a compound point that aggregates local
information. Therefore, using proxy points can not only reduce
memory, but also utilize the local information of point clouds.

B. Grouped VLAD Network

Once we have obtained the local descriptors from the
efficient proxy point convolutional neural network, we extract
global descriptors for point cloud based place recognition.
Based on NetVLAD [21], we design a grouped VLAD network
(G-VLAD), which can obtain discriminative global descriptors
with fewer parameters.

Given a set of learned local feature descriptor {fi | i =
1, 2, · · · , n}, where n is the number of points and fi 2 Rd is
d-dimensional descriptor vector. The original VLAD network
first learns K cluster centers {c1, · · · , cK | ck 2 Rd

}, and
then compute the subvector Vk for each cluster center ck.
Specifically, Vk can be viewed as the weighted sum of the
differences between fi and ck, and is written as:

Vk =
Xn

i=1
a
k
i (fi � ck) (6)

where Vk 2 Rd, and a
k
i is a soft weight. The output global

descriptor vector V = [V1, · · · ,VK ] is the aggregation of
the local feature vectors, where V 2 RK⇥d. When K or d

becomes larger, the obtained global descriptor is a very high-
dimensional vector, i.e., (K⇥d)-dimensional vector, which is
computationally expensive in terms of the time and resource
during retrieval. Generally, the (K ⇥ d)-dimensional vector is
at least a 105-dimensional vector in point cloud based retrieval.
Therefore, the fully connected (FC) layer is usually used to
compress the descriptor vector from the very high-dimensional
vector to a compact low-dimensional vector. However, due to
the high-dimensional input vector, the last FC layer will cause
a large number of parameters and memory consumption.

To achieve average 
operation

Better descriptor with fewer 
parameters



PPT-Net
A master of various algorithms

Hui, Le et al. “Pyramid Point Cloud Transformer for Large-Scale Place Recognition.” 2021 IEEE/CVF International Conference on Computer Vision 
(ICCV) (2021): 6078-6087. 28

The pipeline of the pyramid point cloud transformer network (PPT-Net)



IV. Methodology



HPHN quadruplet loss
Hardest Positive Hardest Negative

30

• For a lazy quadruplet ,  
where      is the anchor point cloud, 
            is a collection of  positive point clouds,  
            is a collection of  negative point clouds,  
               is a randomly sampled point cloud, structurally dissimilar to ,  and .
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HPHN quadruplet loss

• The hardest positive point cloud  is the least structurally similar to the anchor point cloud.

• The hardest negative point cloud is the most structurally similar to the anchor point cloud or the 
randomly sampled point cloud .

dhp

d*n
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HPHN quadruplet loss

• In conclusion, the final HPHN quadruplet loss can be formulated as: 

33
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Scaled-HPHN quadruplet loss
Scaled-HPHN loss
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=                                min{                ,               } + , 

introduce a scale factor , then we have 
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V. Experiments



HPHN in PPT-Net
Introduce HPHN to PPT-Net

36

Loss AR@1% AR@1

Triplet (vanilla) 97.11 92.03

HPHN 97.76 (+0.65) 92.78 (+0.75)



Ablation study

37

κ AR@1% AR@1

0.9 97.89 92.67

1 97.76 92.78

1.001 97.60 92.65

1.01 96.98 91.59

1.1 97.17 91.99
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Comparison between three losses

39

Loss AR@1% AR@1

Triplet (vanilla) 97.11 92.03

HPHN 97.76 (+0.65) 92.78 (+0.75)

S-HPHN (κ=0.9) 97.89 (+0.78) 92.67 (+0.64)



VI. Conclusion



• The HPHN loss is implemented in PPT-Net.

• Based on HPHN loss, a scale factor is introduced to propose the scaled-HPHN loss function. 

• Experiments show that both HPHN and scaled-HPHN are better than the original triplet loss.

41



VII. Future work



Trainable scale factor
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LS−HPHN = [ f (da) − f (dhp)
2

2
− κDhn + γ]

+

Make it trainable



Classification of 3D VPR Algorithms
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EdgeConv based Attention based Self-attention based MinkowskiEngine

LPD-Net 
EPC-Net 
PPT-Net

PCAN 
DH3D

SOE-Net 
PPT-Net MinkLoc3DCHAPTER 3. METHODOLOGY

Table 3.1: Comparison of computation and memory requirement between di�erent
methods.

Method Parameters FLOPs
Runtime

per frame

PN_VLAD 19.78M 4.21G 20ms
PCAN 20.42M 7.73G 58ms
LPD-Net 19.81M 7.80G 28ms
MinkLoc3D 1.10M 1.81G 17ms

EPC-Net 4.70M 3.25G 20ms
PPT-Net 13.12M 3.23G 18ms

penalty is to prevent a match when one observation does not agree with the others
significantly:

O(k) =

Y
____]

____[

max(D)≠D(k)
max(D)≠min(D) ≠ ‘ if O(k) Ø Othresh,

‘ else.
(3.13)

where ‘ = 0.001, D is the di�erence vector between the current point cloud and every
database template. The k represents the template number. To avoid causing the
resultant value approaching 0 or Œ when applying the logarithm, 0.001 and 0.999
are chosen as the minimum and maximum values. The number after the decimal
point is limited so that in the case of extreme perceptual alienation, the distinction
between these places is determined by di�erences between point cloud processing
methods, rather than insignificant variations in the di�erence scores.

The definition of transition matrix is based on the assumption that the vehicle
or robot will remain at a speed between zero and five times the reference traversal
speed during the query traversal of the environment. Hence, Vmin is set to 0 frames
and Vmax to 5 frames.

T (k, i) =

Y
__]

__[

log(1) if Vmin Æ (k ≠ i) Æ Vmax

log(‘) else.
(3.14)

The e�ect of this equation is to discourage discontinuous jumps in the pseudo-
probability matrix by increasing the score of the template outside the velocity
window.
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Multi-process Fusion
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