

Outdoor Visual Place Recognition Based on 3D Point Cloud

Supervisor: Prof. TEO Chee Leong

Examiner: Prof. TAY Eng Hock

YUAN Chengran

Contents

I. Introduction

II. Clarification/ Problem Definition

III. Literature review

IV. Methodology

V. Experiments

VI. Conclusion

VII. Future work

I. Introduction

Visual Place Recognition (VPR)

What is VPR?

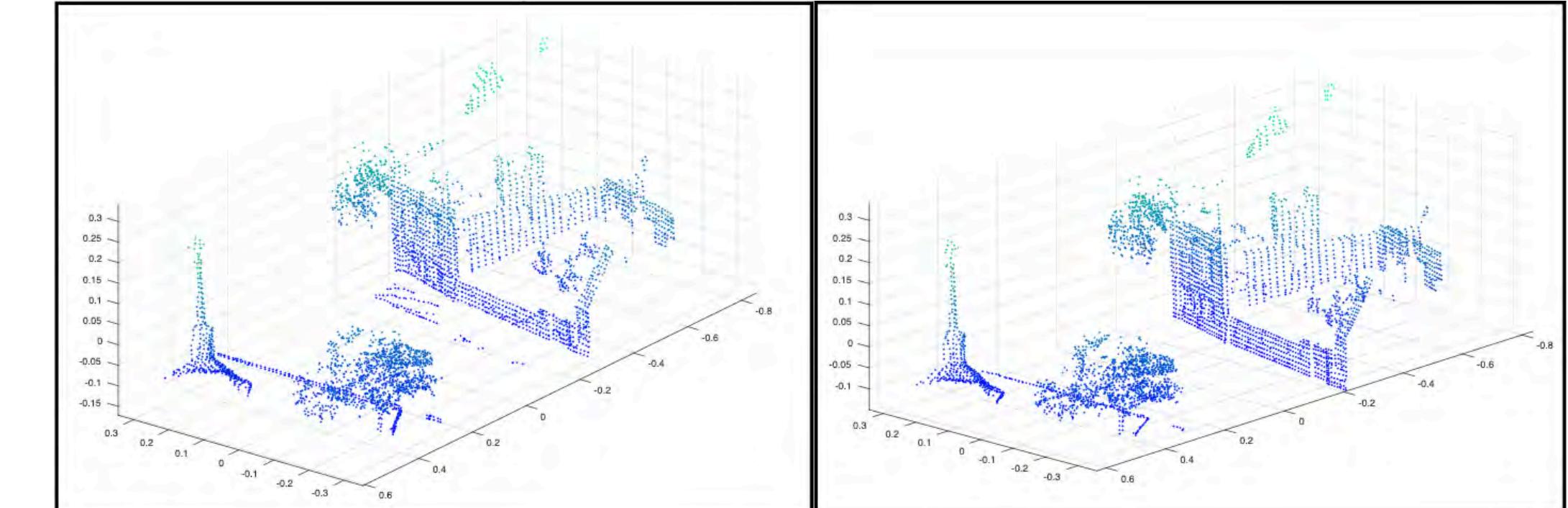
- For an agent (a robot or a vehicle), the ability to recognize the same place despite significant changes in appearance and viewpoints.

Two pictures taken at the same place
(different seasons, weather and illumination conditions)

2D & 3D Methods for VPR

- Based on the data input, there are mainly two approaches to solving VPR,
 - 2D method using **images** as input
 - 3D method using **3D data** (usually **point cloud**) as input.

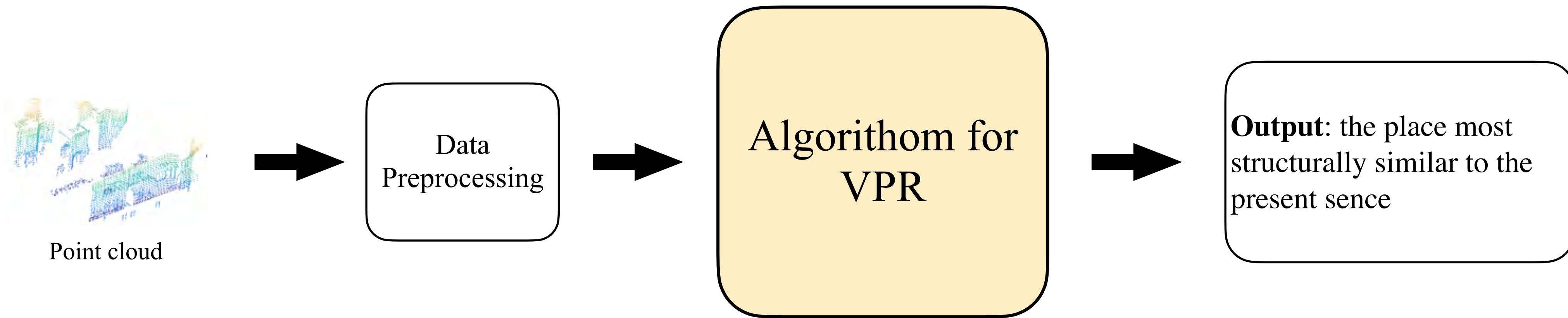
Image input



Point Cloud input

III. Clarification

General framework for 3D VPR



Clarification

The problem defined as follows:

Given a query 3D point cloud denoted as q , where

$$AOC(q) \approx AOC(m_i)$$

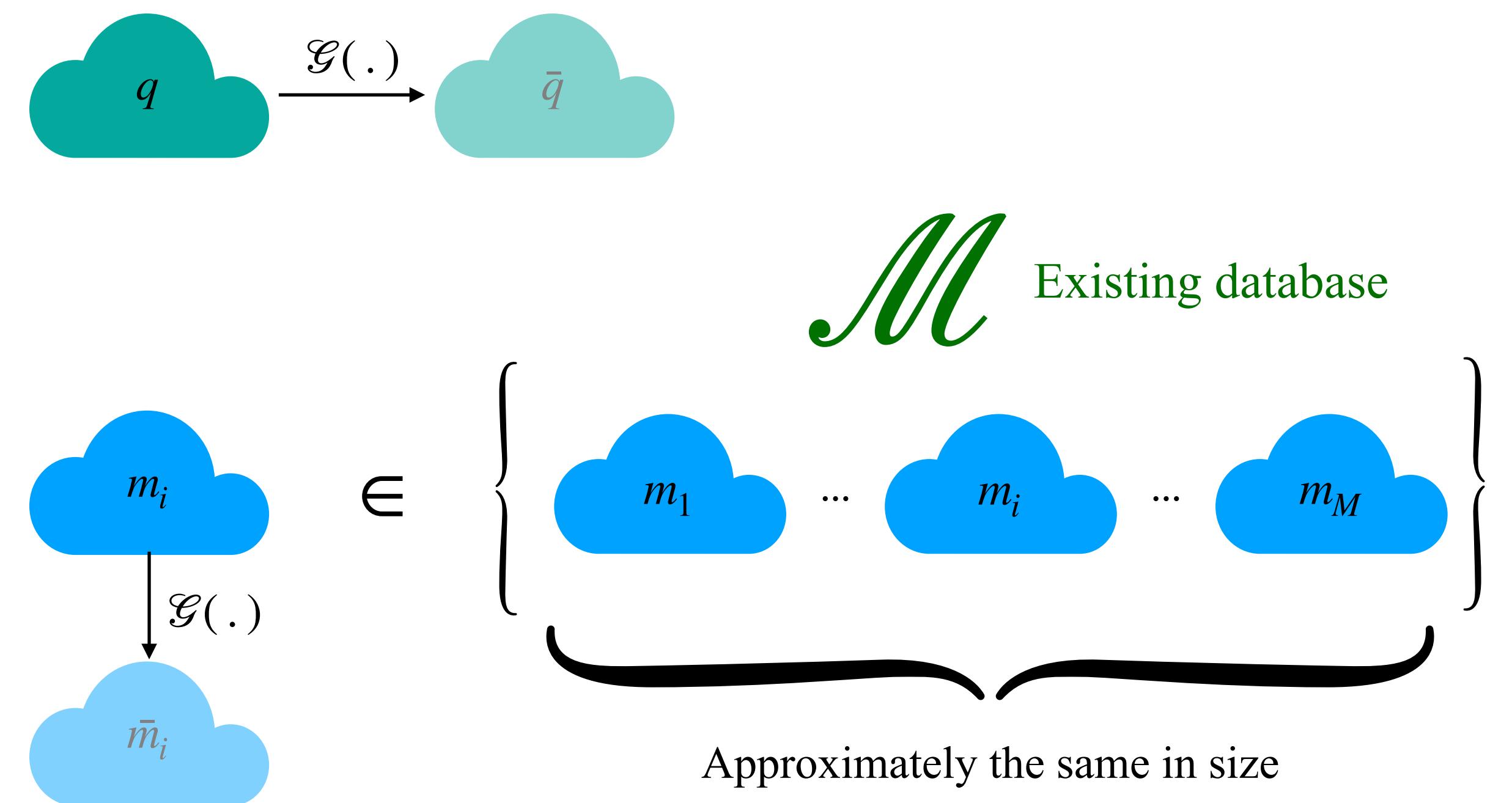
and

$$|\mathcal{G}(q)| = |\mathcal{G}(m_i)|,$$

AOC: area of coverage

$\mathcal{G}(\cdot)$: downsampling filter

The goal is to retrieve the submap m_* from the database \mathcal{M} that is structurally most similar to q .



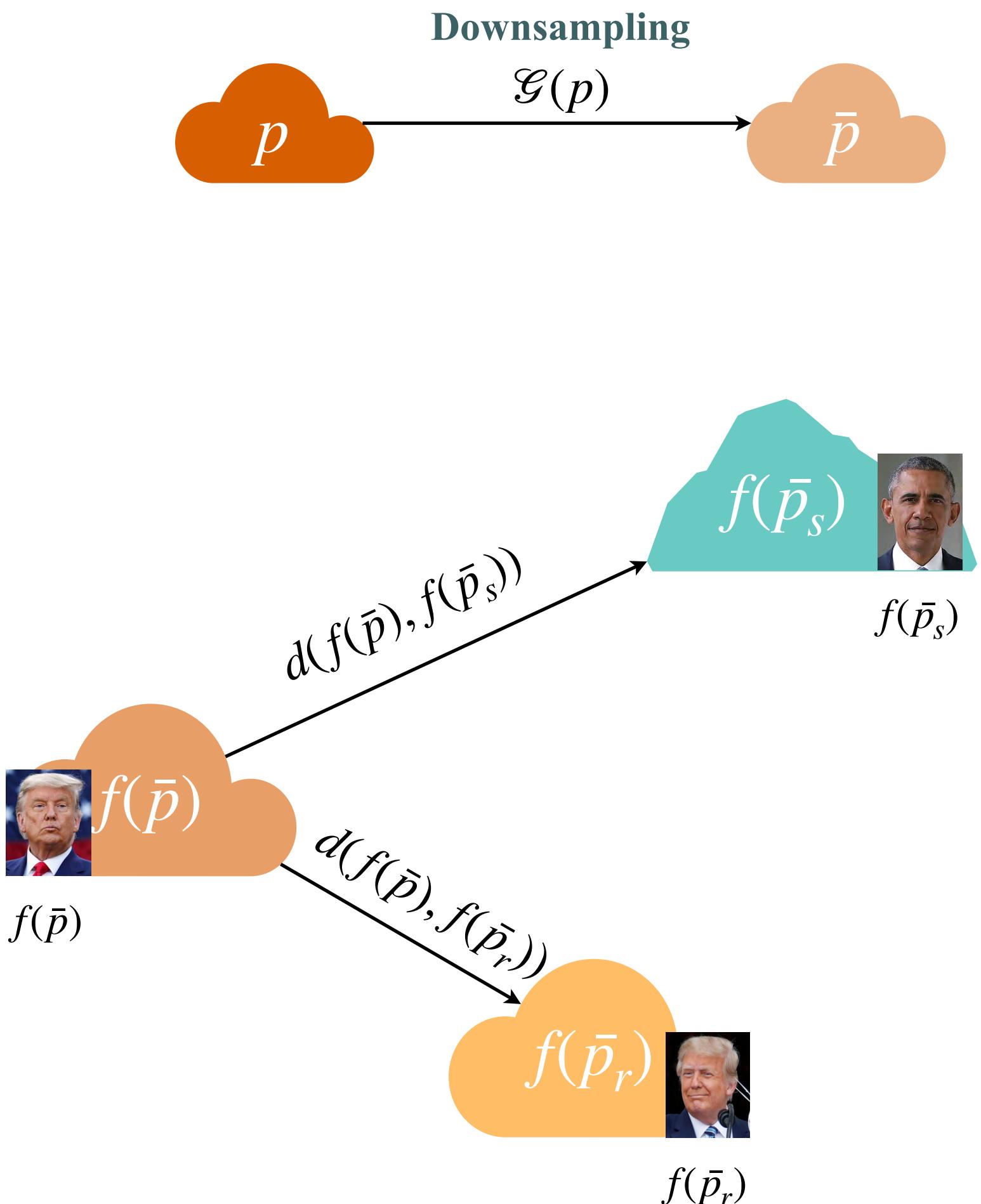
Function Definition

Towards this goal, a deep network is devised to learn a function $f(\cdot)$ that maps a given downsampled 3D point cloud $\bar{p} = \mathcal{G}(p)$ to a fixed size **global descriptor vector** $f(\bar{p})$ such that

$$d(f(\bar{p}), f(\bar{p}_r)) < d(f(\bar{p}), f(\bar{p}_s)),$$

if p is structurally similar to p_r but dissimilar to p_s .

$d(\cdot)$ is some distance function, e.g. Euclidean distance function.



Simplification

Our problem then simplifies to finding the submap

$$m_* \in \mathcal{M}$$

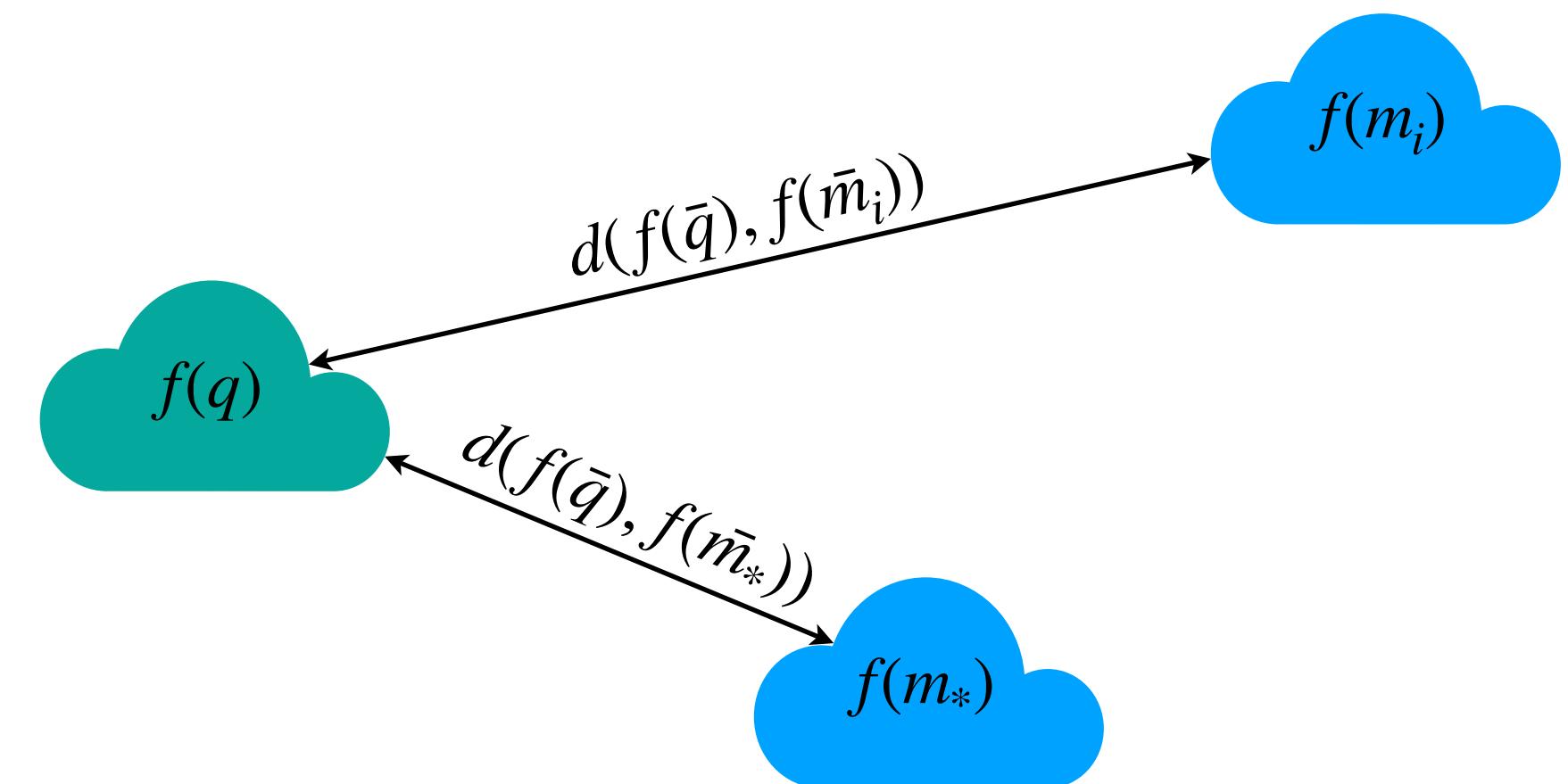
such that its global descriptor vector $f(\bar{m}_*)$ gives the **minimum distance** with the global descriptor vector $f(\bar{q})$ from the query q , i.e.

$$d(f(\bar{q}), f(\bar{m}_*)) < d(f(\bar{q}), f(\bar{m}_i)), \forall i \neq *.$$

In practice, this can be done by **the nearest neighbor search** through a list of global descriptors

$$\{ f(\bar{m}_i) \mid i \in 1, 2, \dots, M \}$$

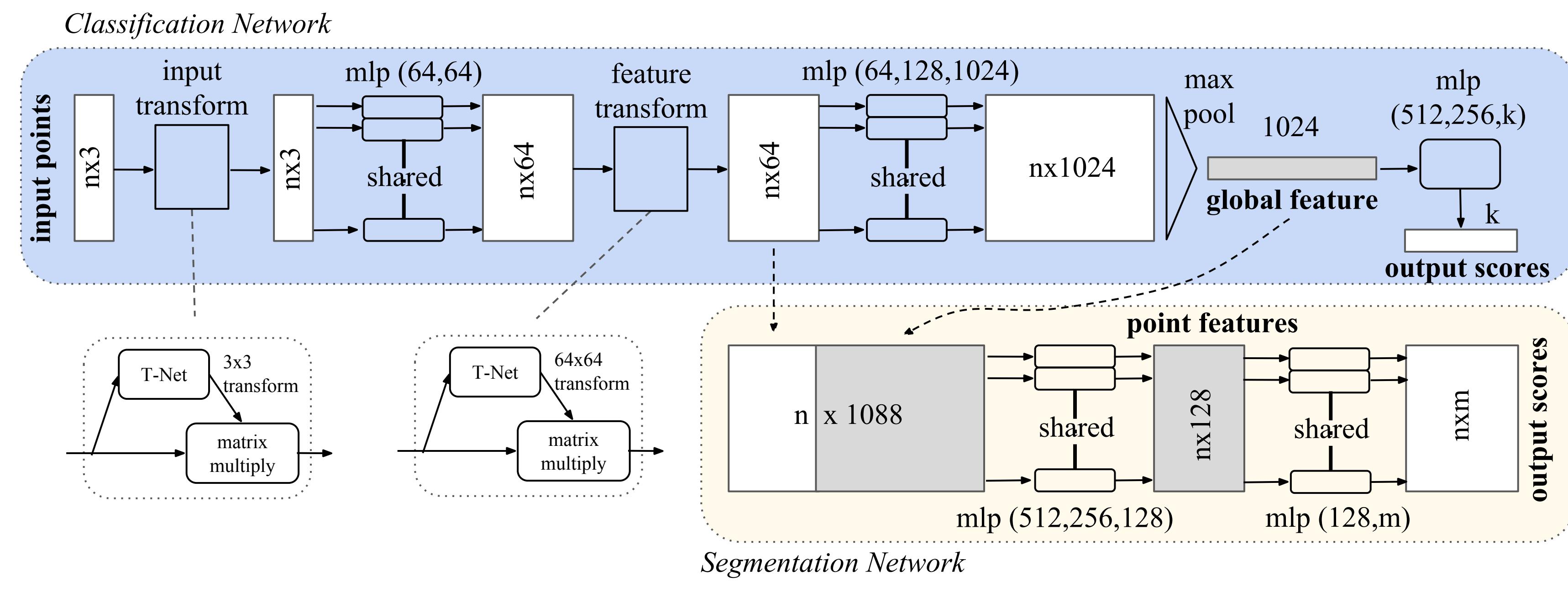
that can be computed once **offline** and stored in memory, while $f(\bar{q})$ is computed **online**.



III. Literature review

PointNet

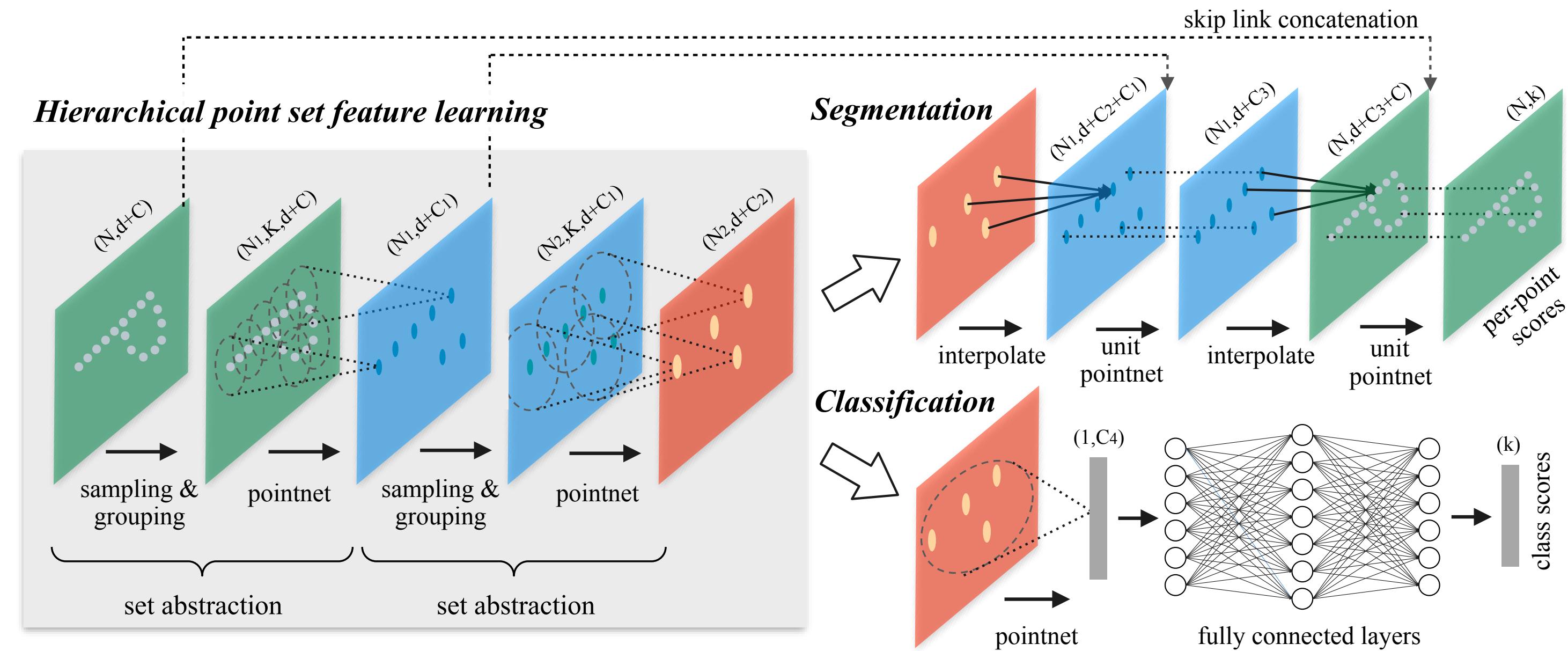
Pioneer in Point Cloud Processing



Qi, C. et al. "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation." *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)* (2017): 77-85.

PointNet++

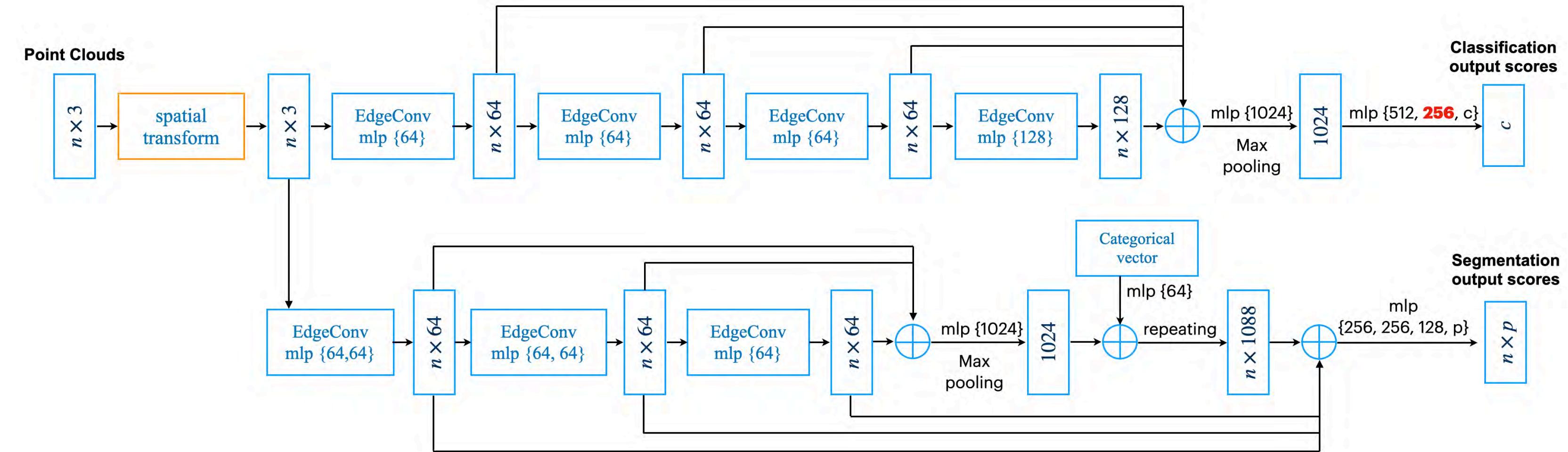
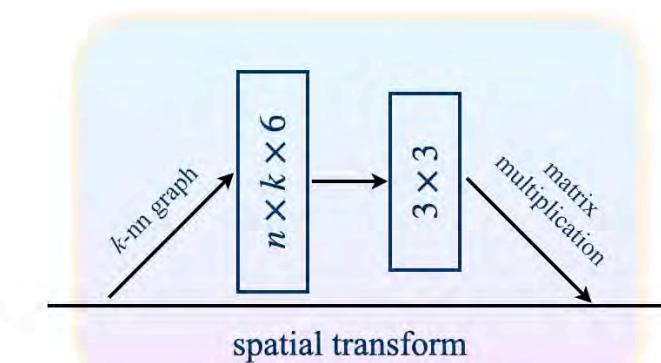
Hierarchical architecture



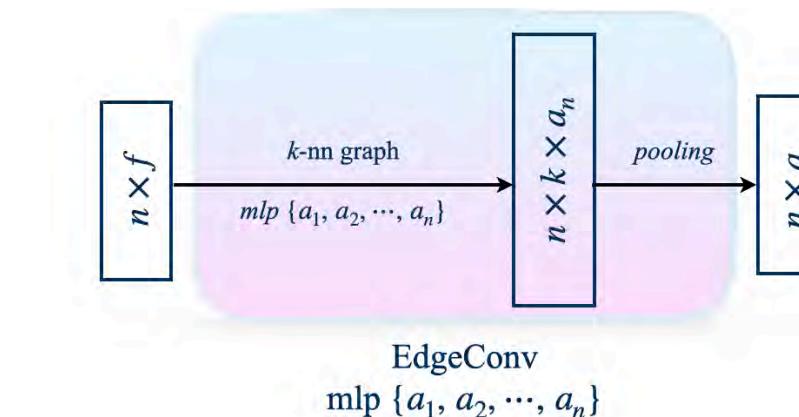
PointNet++: Hierarchical feature learning architecture and its application.

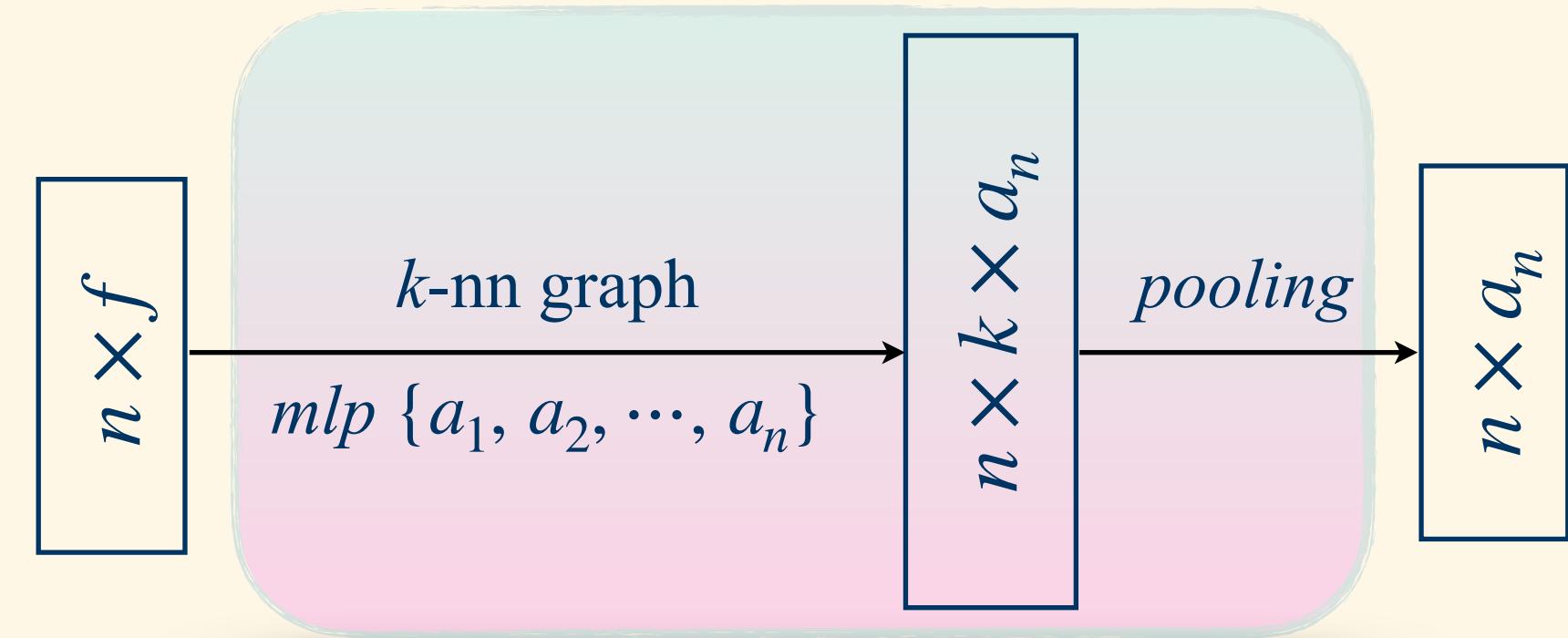
DGCNN

Better extract local geometric features

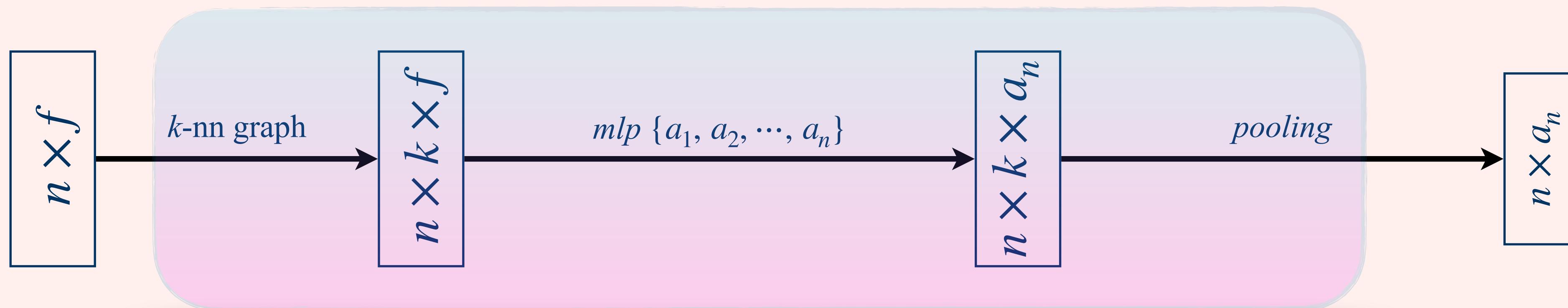
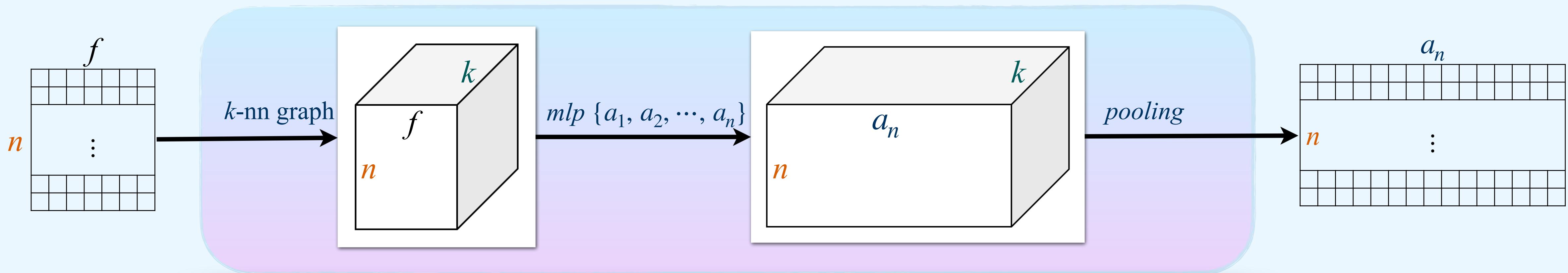


Model architectures of Dynamic Graph CNN.



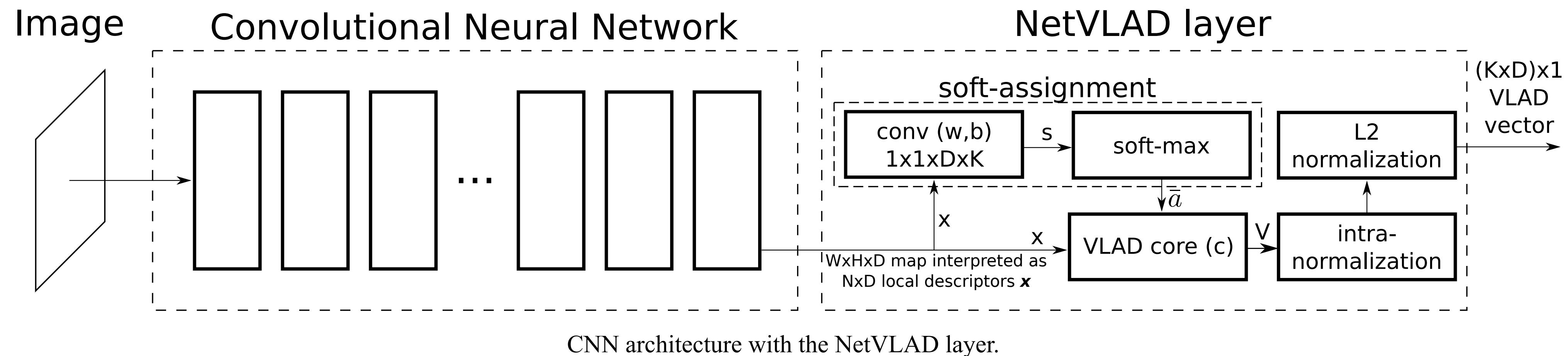


EdgeConv
 $\text{mlp } \{a_1, a_2, \dots, a_n\}$



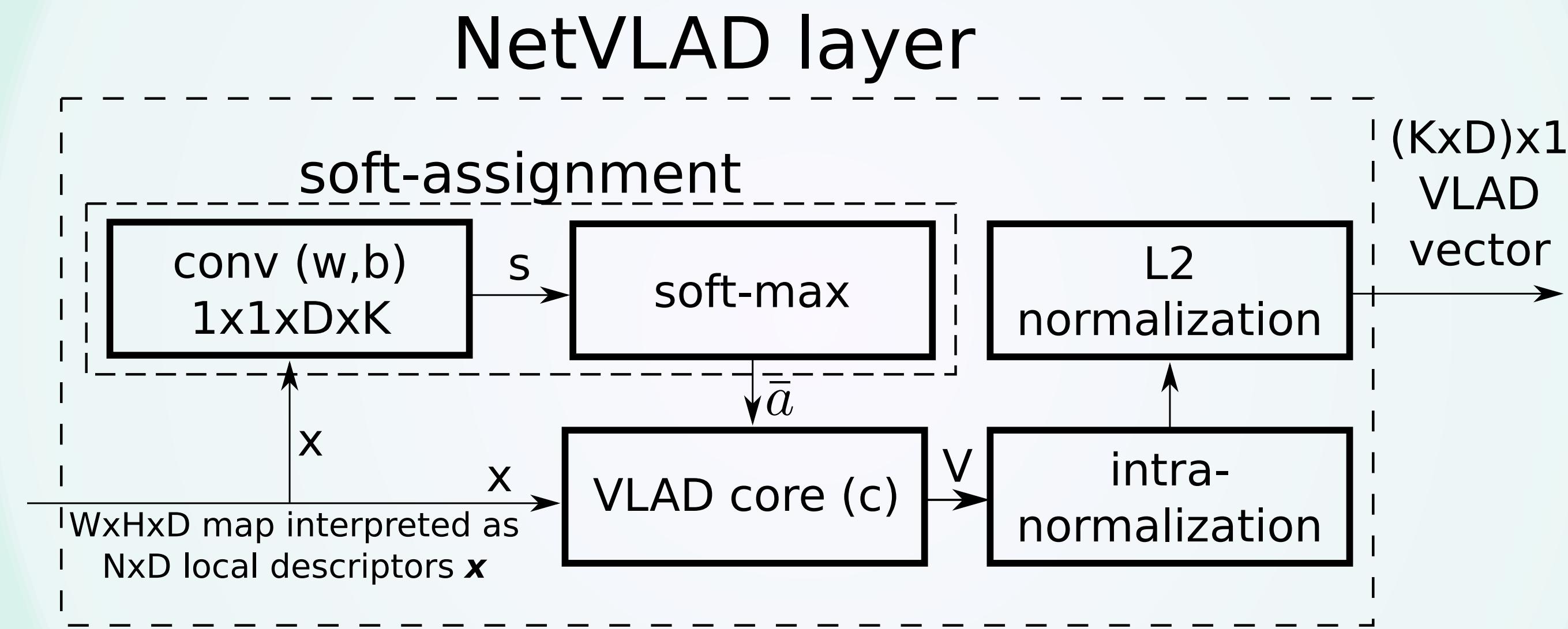
NetVLAD

A Backbone for 2D VPR

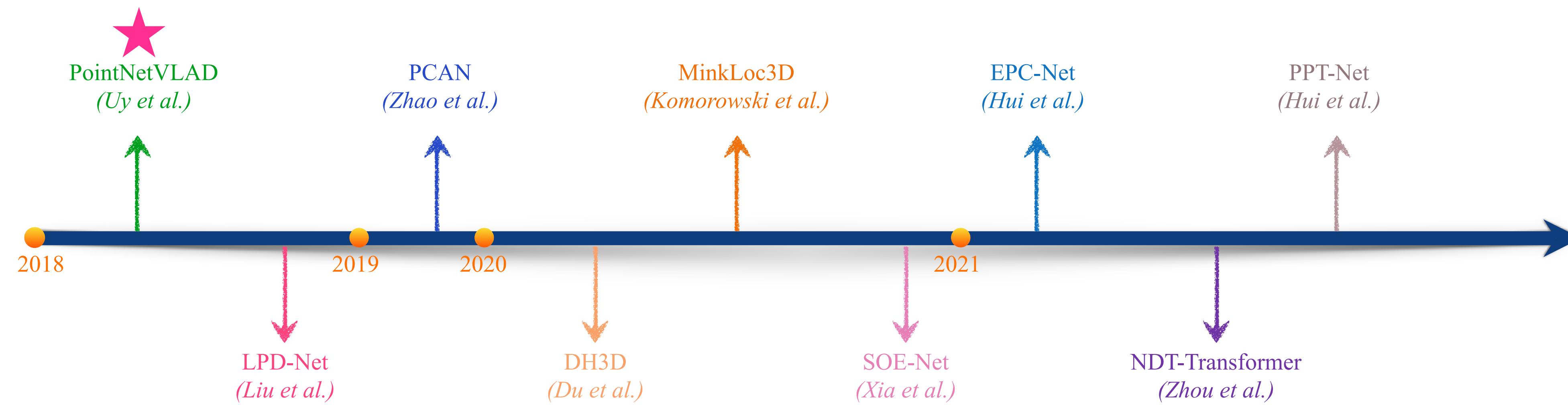


Arandjelović, Relja et al. “NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.” *IEEE Transactions on Pattern Analysis and Machine Intelligence* 40 (2018): 1437-1451.

Aggregate local descriptors

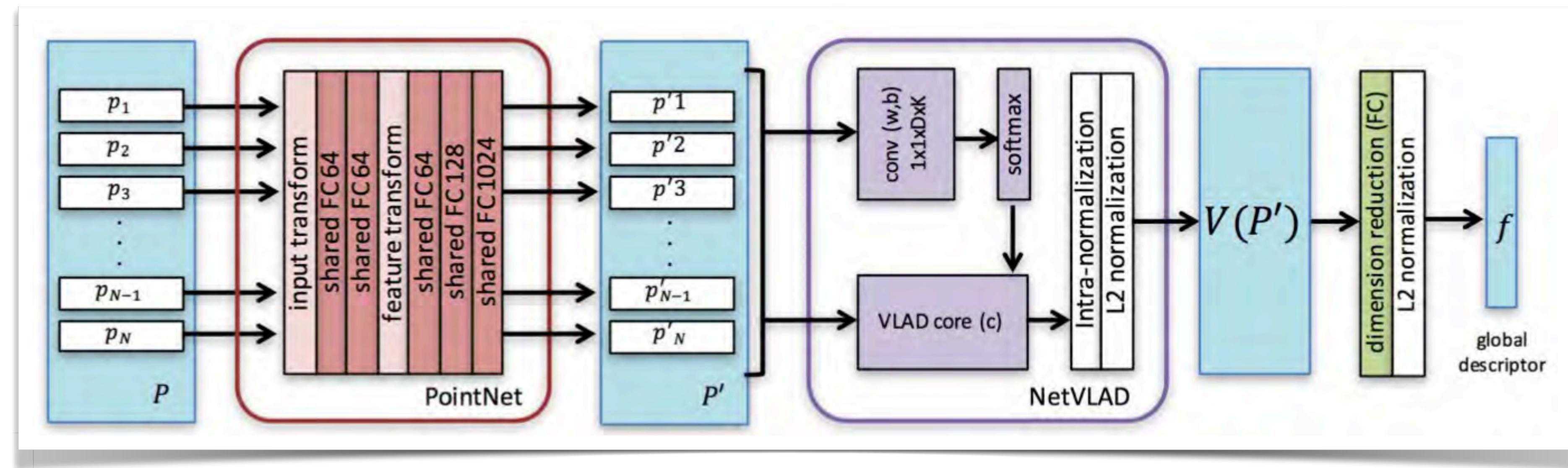


Chronological overview of 3D VPR



PointNetVLAD

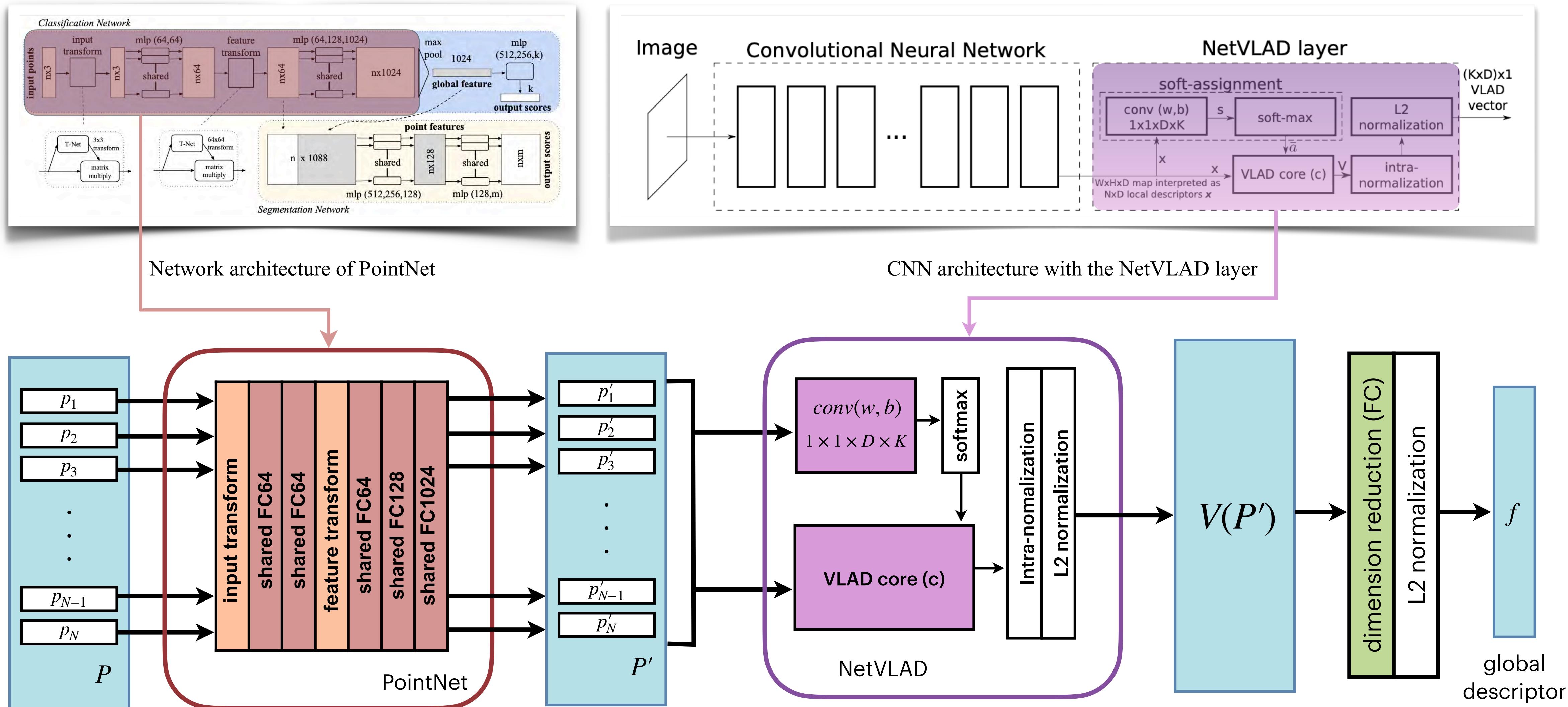
Pioneer of 3D VPR



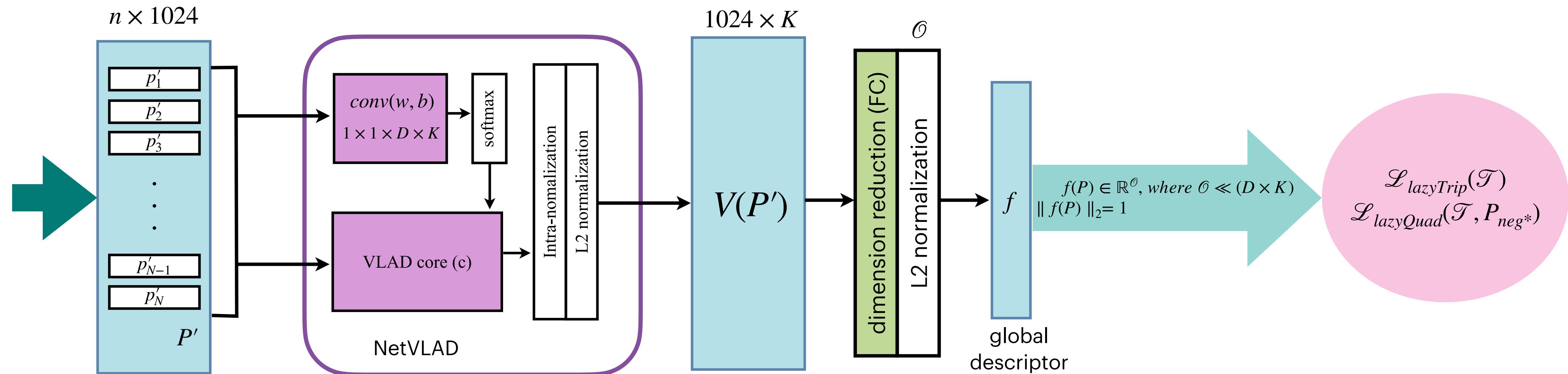
Network Architecture of PointNetVLAD.

Uy, Mikaela Angelina and Gim Hee Lee. "PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition." *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition* (2018): 4470-4479.

PointNetVLAD Backbone

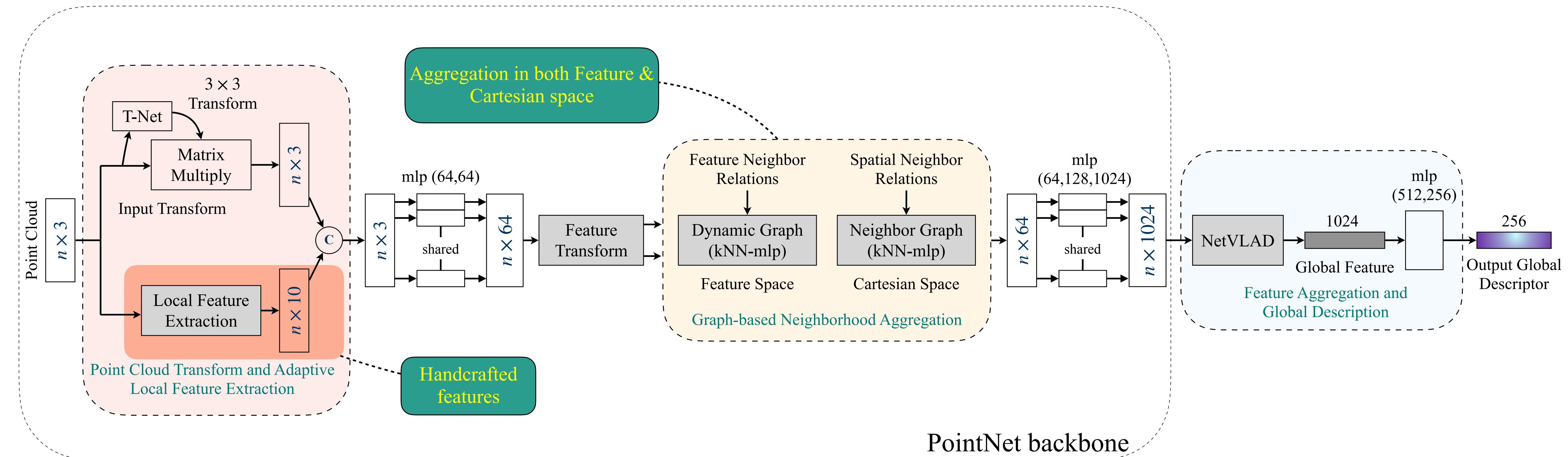


PointNetVLAD workflow & dataflow



LPD-Net

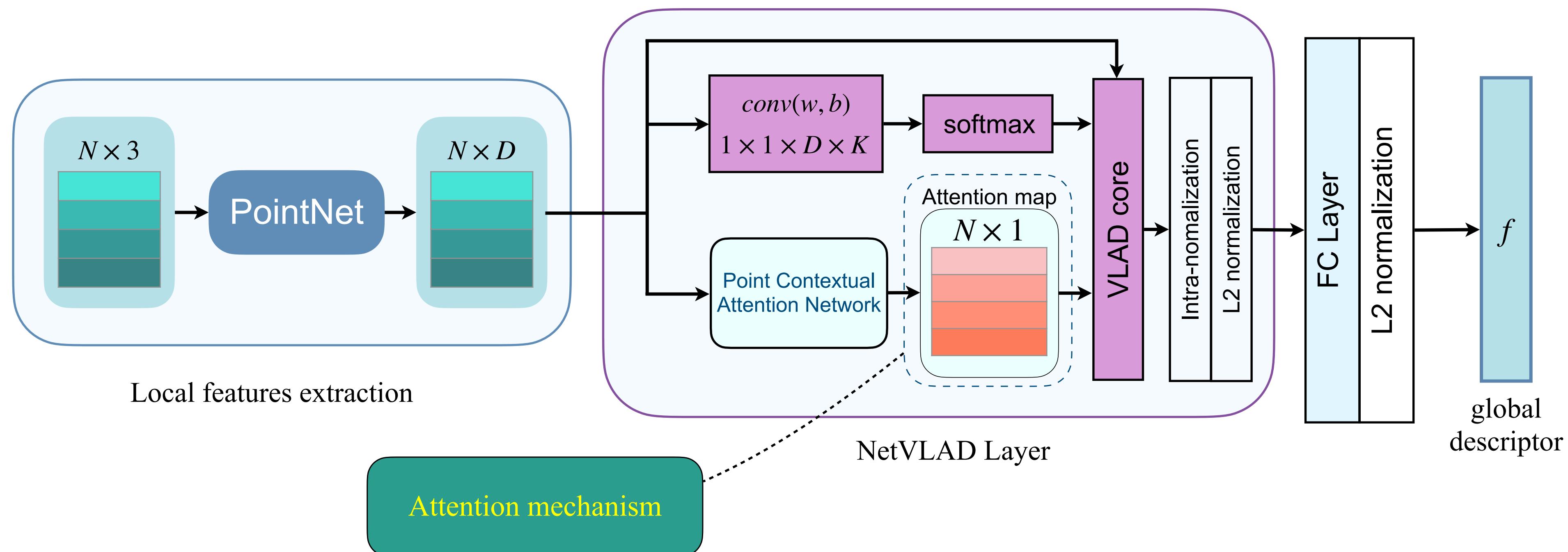
Handcrafted features, coordinate & feature space



Liu, Zhe et al. “LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis.” *2019 IEEE/CVF International Conference on Computer Vision (ICCV)* (2019): 2831-2840.

PCAN

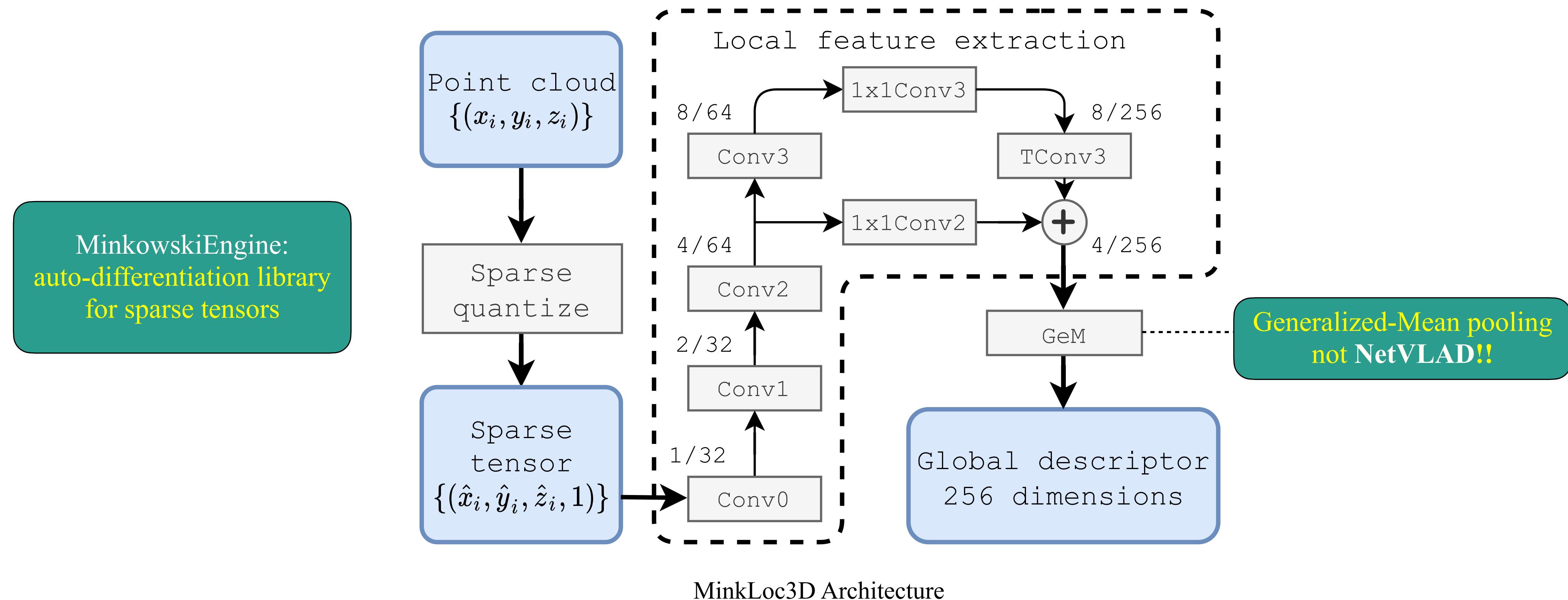
The first one to introduce the attention mechanism



Zhang, Wenxiao and Chunxia Xiao. "PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval." *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)* (2019): 12428-12437.

MinkLoc3D

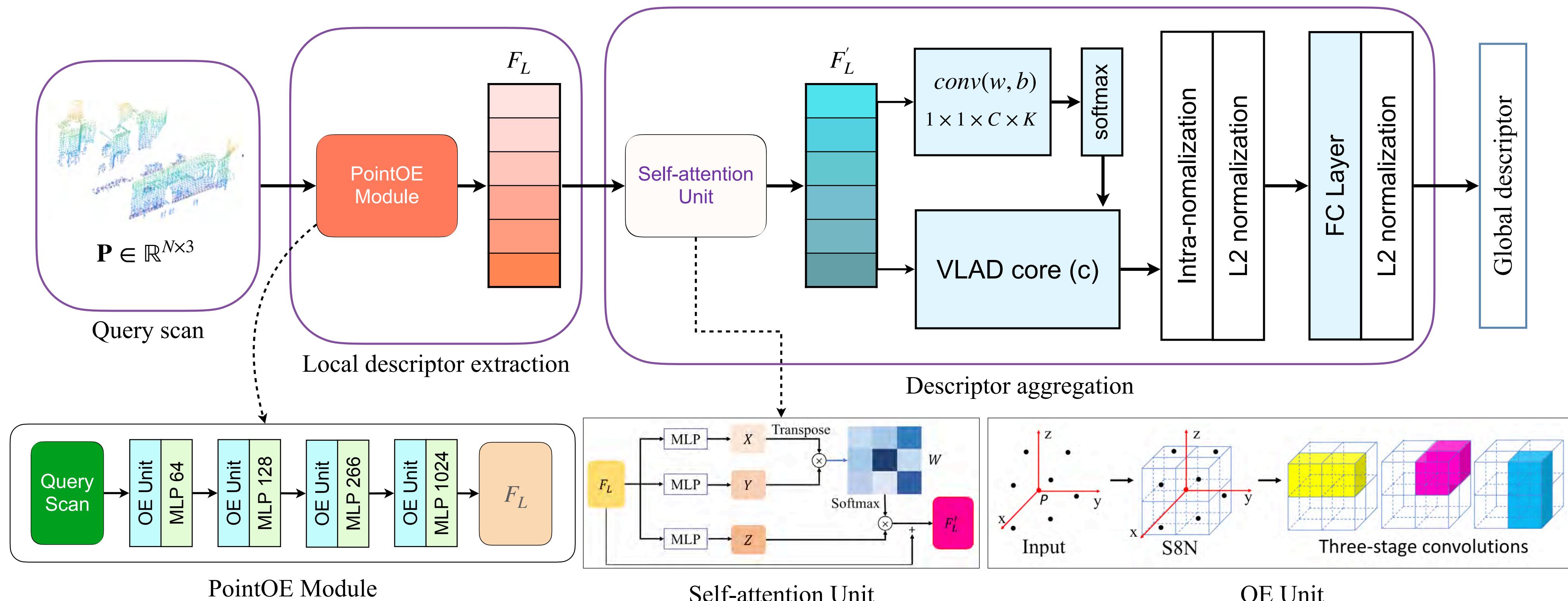
A novel backbone for 3D VPR



Komorowski, Jacek. "MinkLoc3D: Point Cloud Based Large-Scale Place Recognition." *2021 IEEE Winter Conference on Applications of Computer Vision (WACV)* (2021): 1789-1798.

SOE-Net

Introduce self-attention & a new loss function



Xia, Yan et al. “SOE-Net: A Self-Attention and Orientation Encoding Network for Point Cloud based Place Recognition.” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 11343-11352.

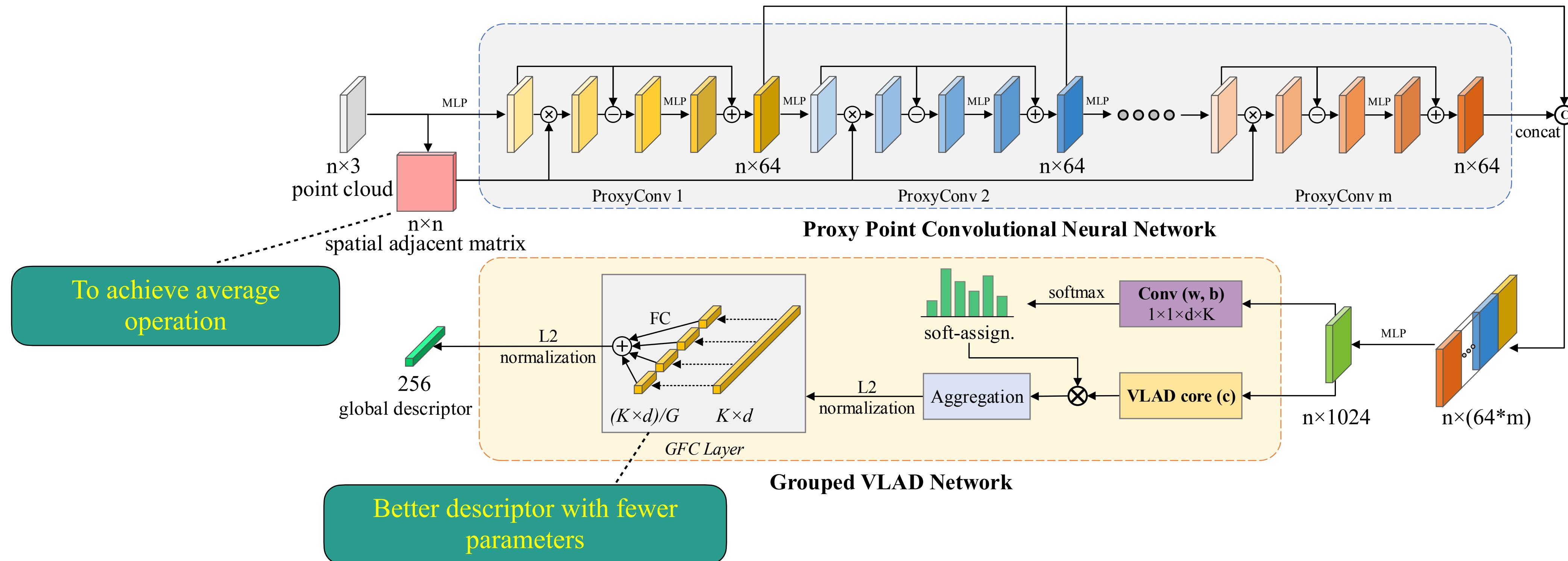
A New Loss Function for VPR:

Hardest Positive Hardest Negative quadruplet loss **(HPHN loss)**

$$L_{HPHN} = \left[\left\| f(\delta_a) - f(\delta_{hp}) \right\|_2^2 - d_{hn} + \gamma \right]_+$$

EPC-Net

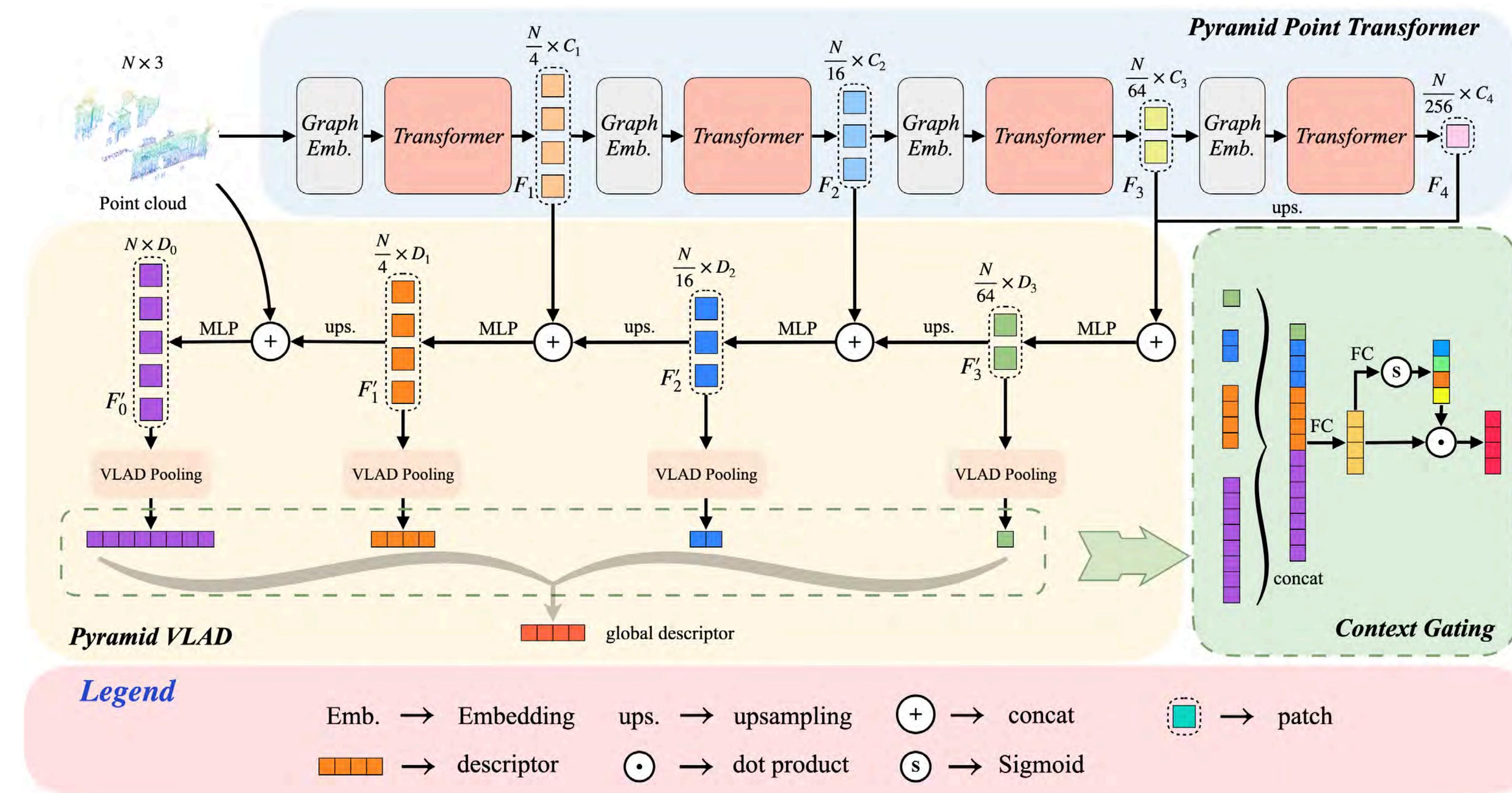
ProxyConv & grouped VLAD



Hui, Le et al. "Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition." *IEEE Transactions on Image Processing* 31 (2022): 1258-1270.

PPT-Net

A master of various algorithms



The pipeline of the pyramid point cloud transformer network (PPT-Net)

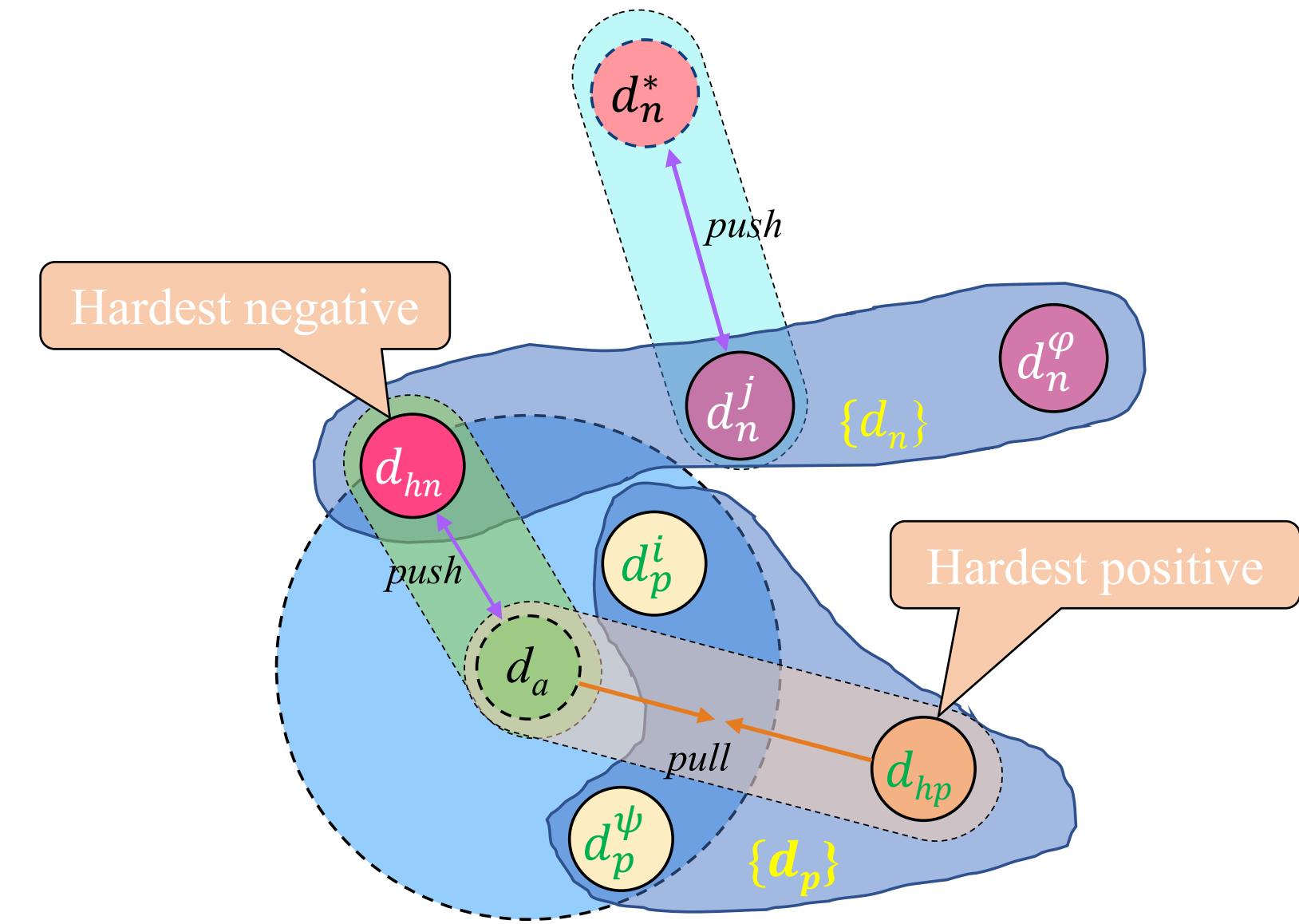
Hui, Le et al. “Pyramid Point Cloud Transformer for Large-Scale Place Recognition.” 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021): 6078-6087.

IV. Methodology

HPHN quadruplet loss

Hardest Positive Hardest Negative

- For a lazy quadruplet $Q_l = (d_a, \{d_p\}, \{d_n\}, d_n^*)$, where d_a is the anchor point cloud, $\{d_p\}$ is a collection of ψ positive point clouds, $\{d_n\}$ is a collection of φ negative point clouds, d_n^* is a randomly sampled point cloud, structurally dissimilar to d_a , d_p and d_n .



HPHN quadruplet loss

- The hardest positive point cloud d_{hp} is the **least structurally similar** to the anchor point cloud.
- The hardest negative point cloud is the **most structurally similar** to the anchor point cloud or the randomly sampled point cloud d_n^* .

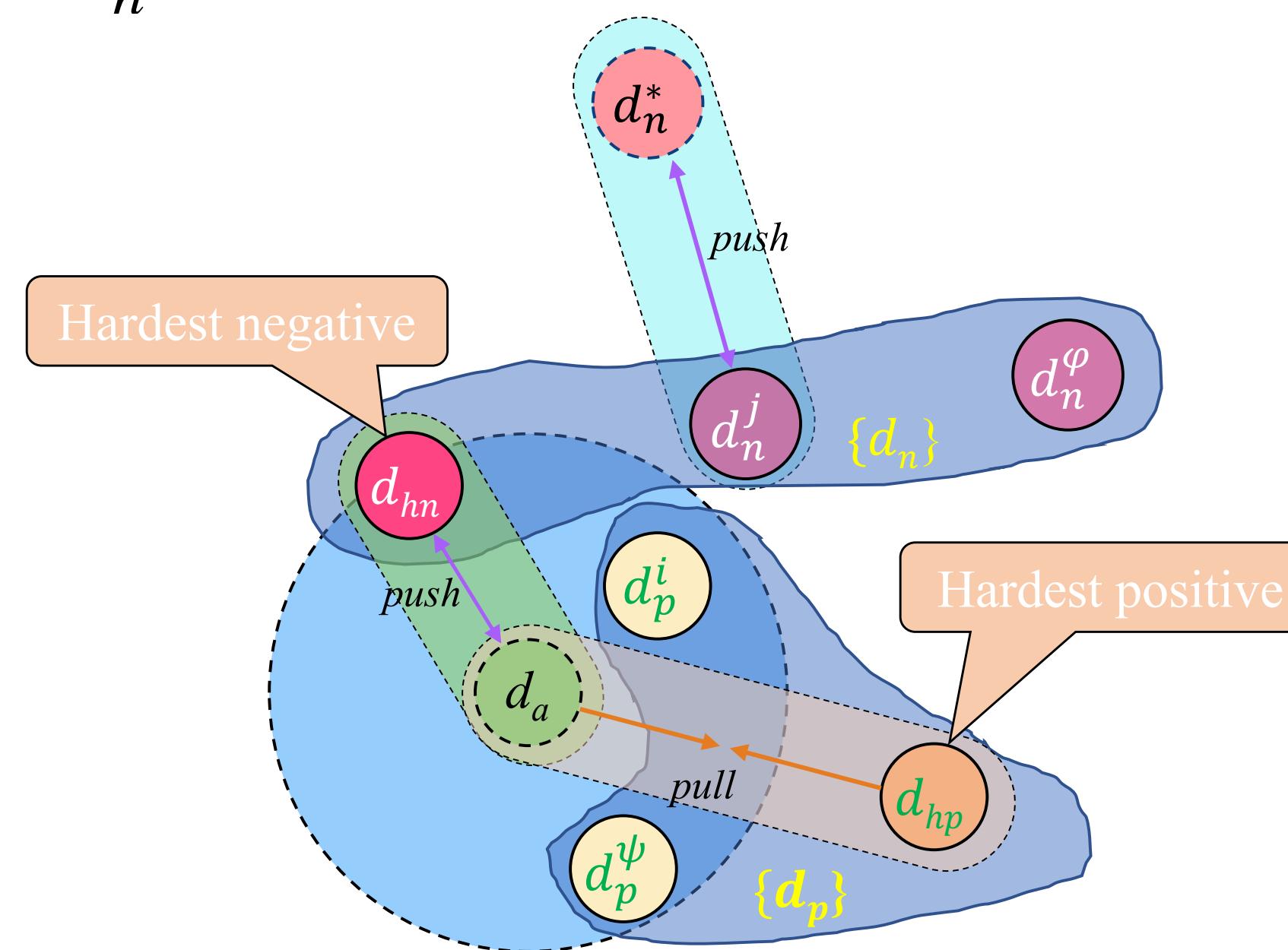
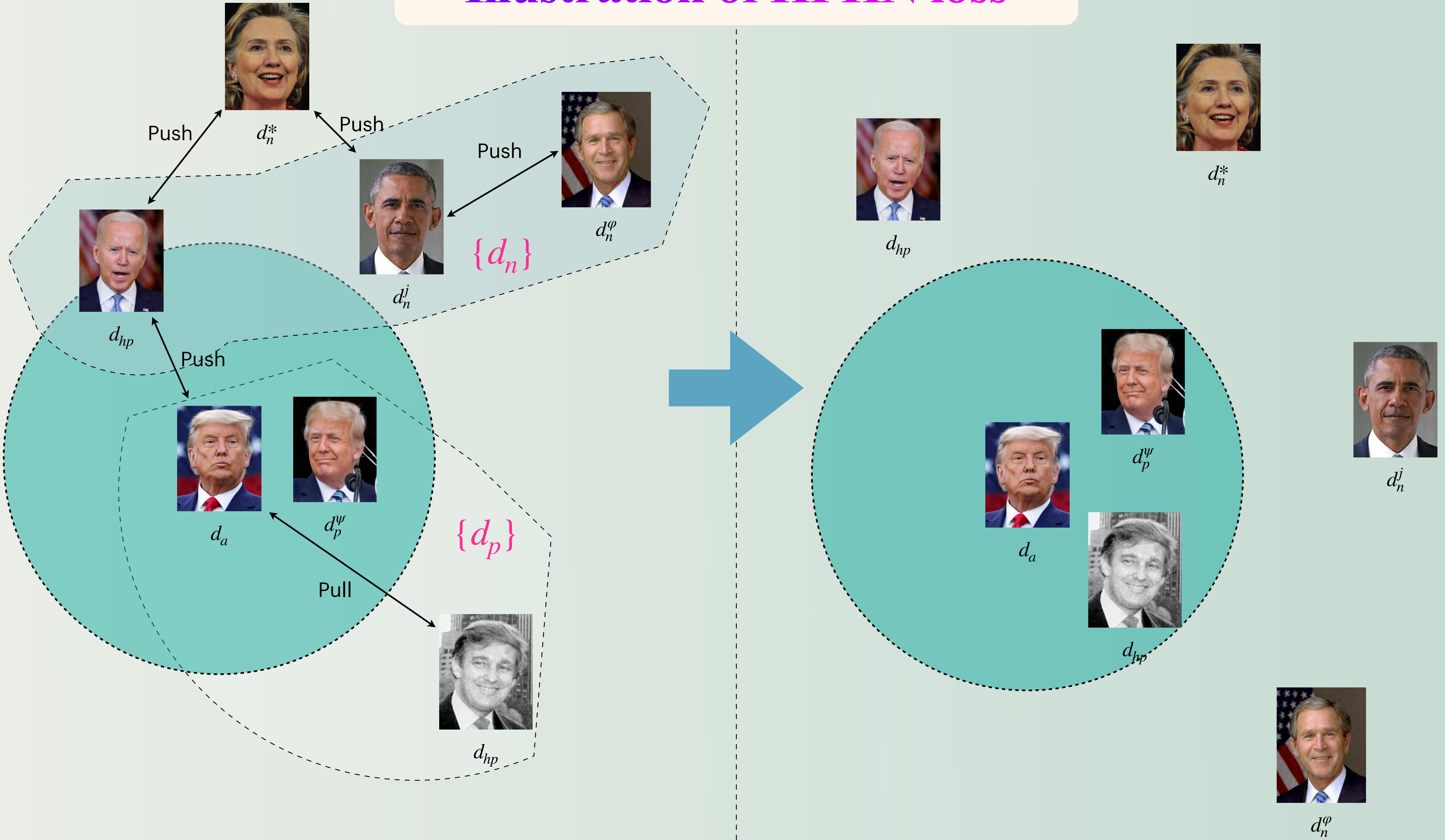
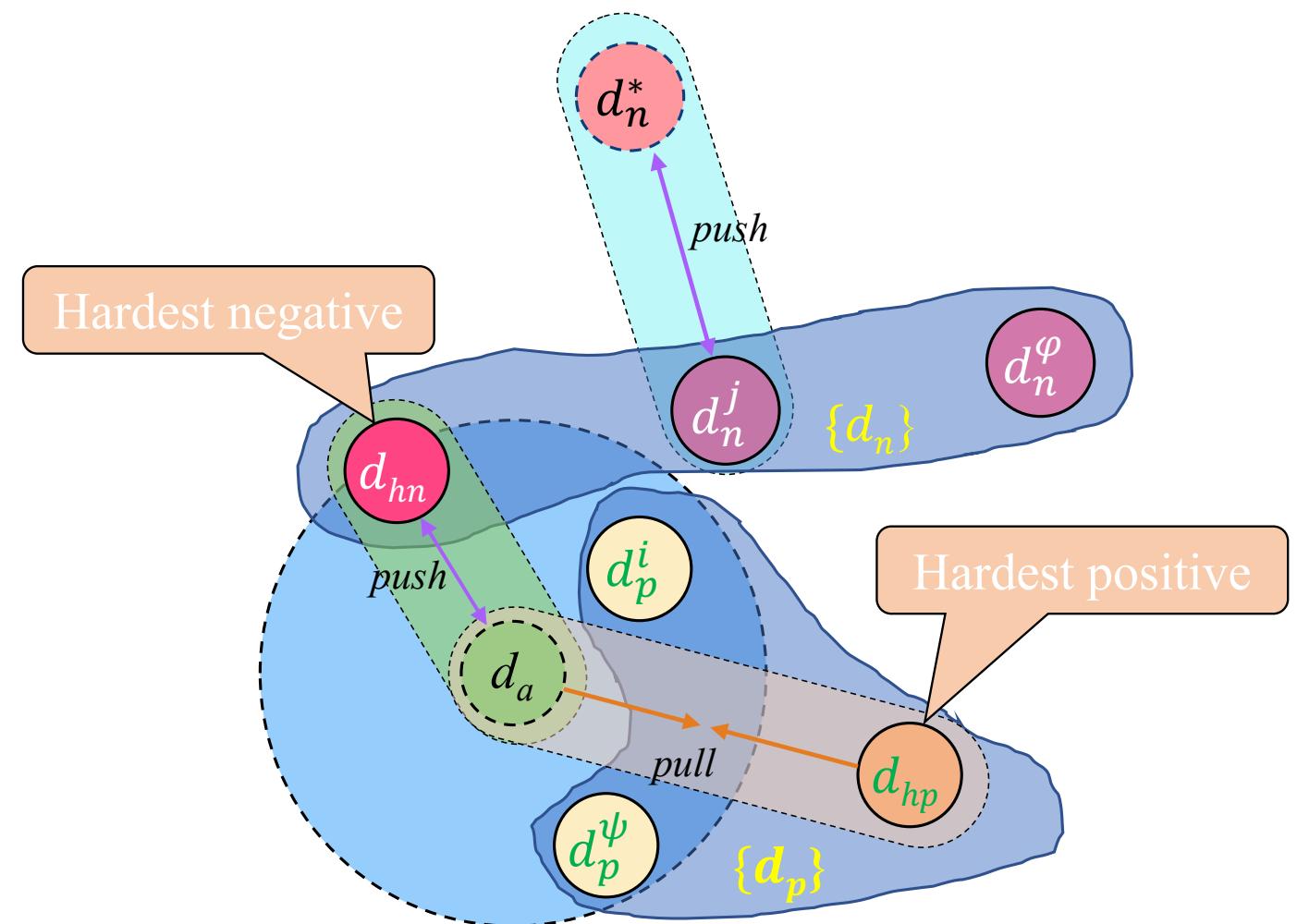


Illustration of HPHN loss

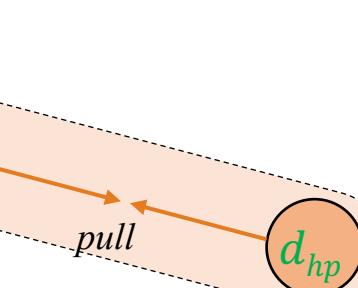
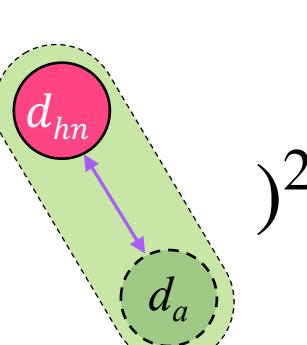
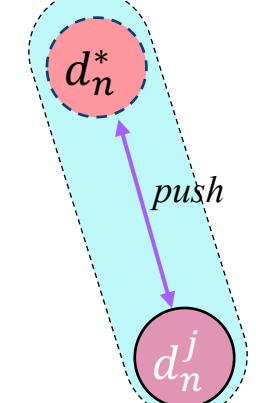


HPHN quadruplet loss

- In conclusion, the final HPHN quadruplet loss can be formulated as:

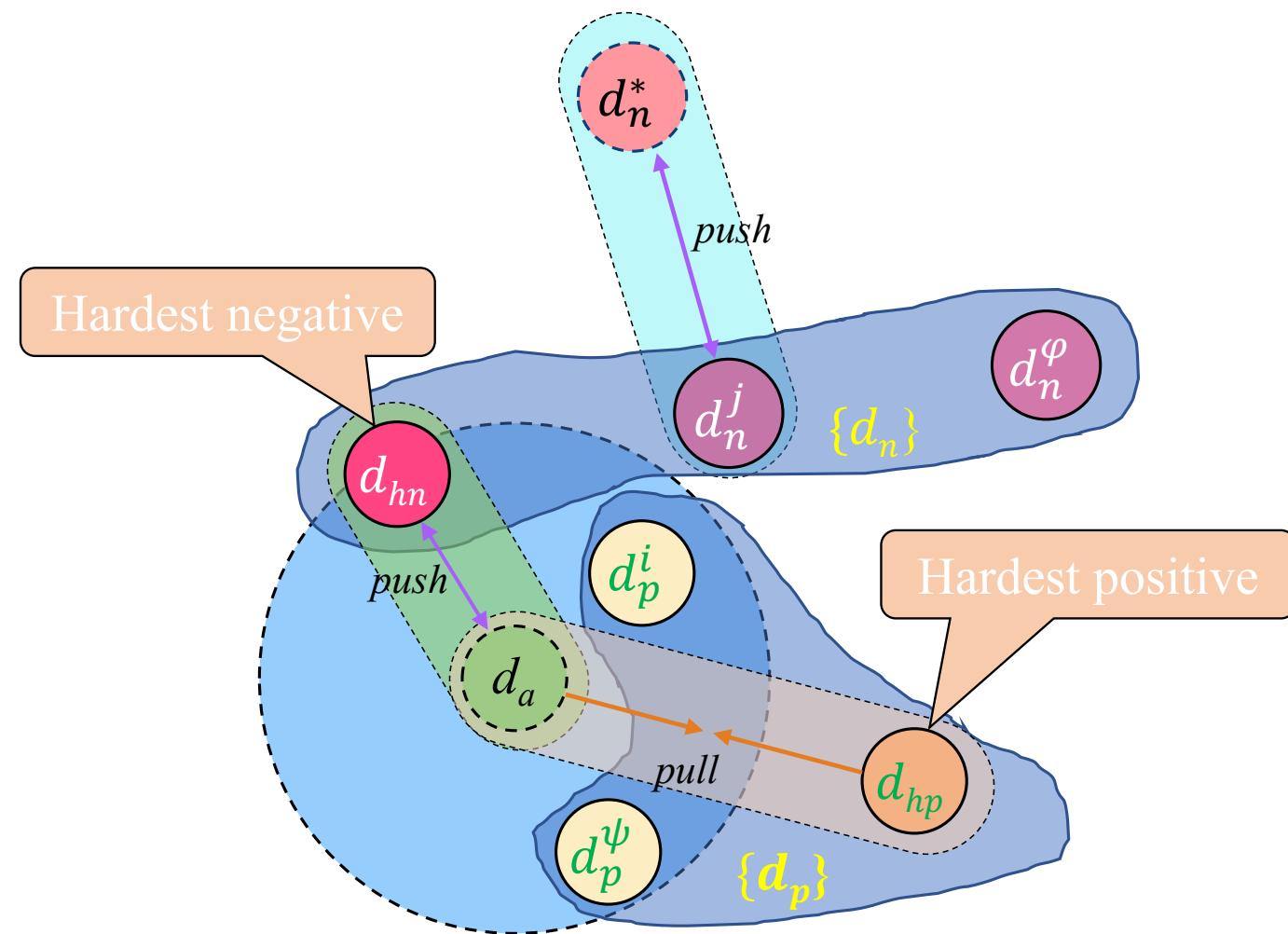


$$\begin{aligned}
 L_{HPHN} &= \left[\left\| f(d_a) - f(d_{hp}) \right\|_2^2 - D_{hn} + \gamma \right]_+
 \\
 &= \left[(\text{---})^2 - \min \{ (\text{---})^2, (\text{---})^2 \} + \gamma \right]_+
 \end{aligned}$$



Scaled-HPHN quadruplet loss

Scaled-HPHN loss



$$L_{HPHN} = \left[\left\| f(d_a) - f(d_{hp}) \right\|_2^2 - D_{hn} + \gamma \right]_+$$

introduce a **scale factor κ** , then we have

$$L_{S-HPHN} = \left[\left\| f(d_a) - f(d_{hp}) \right\|_2^2 - \kappa D_{hn} + \gamma \right]_+$$

V. Experiments

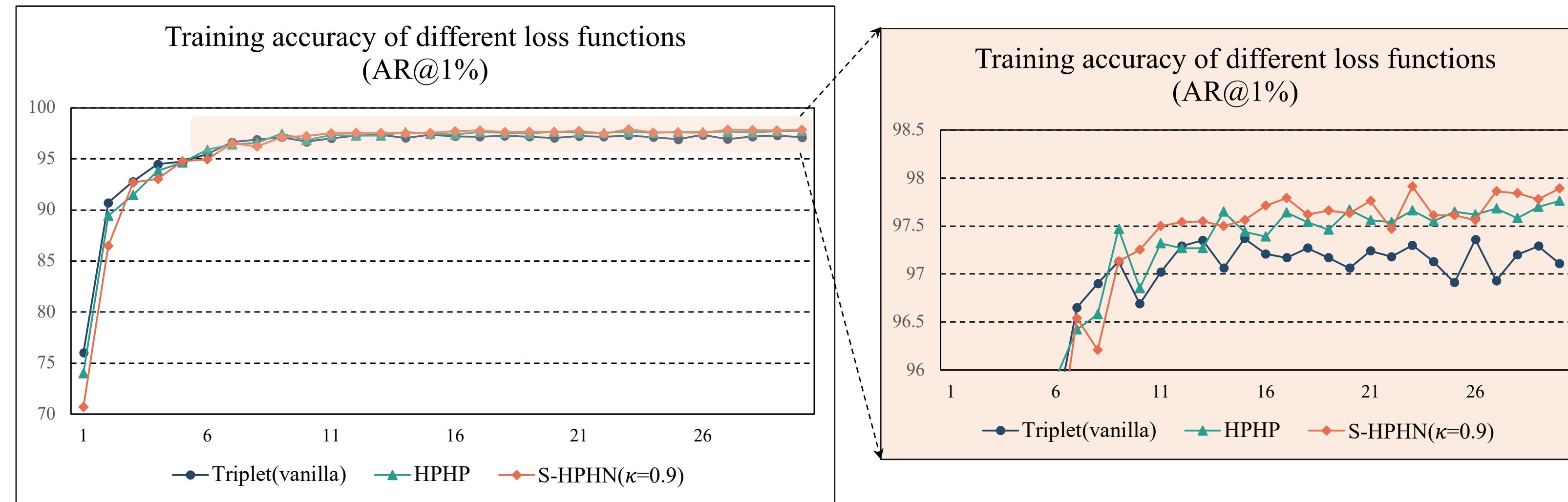
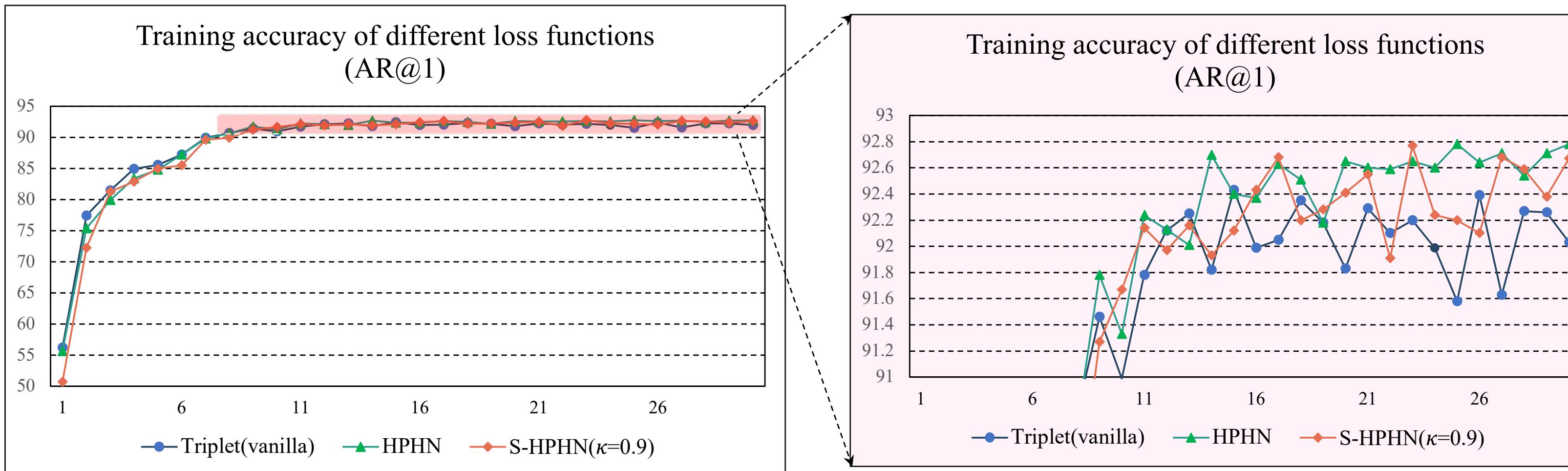
HPHN in PPT-Net

Introduce HPHN to PPT-Net

Loss	AR@1%	AR@1
Triplet (vanilla)	97.11	92.03
HPHN	97.76 (+0.65)	92.78 (+0.75)

Ablation study

κ	AR@1%	AR@1
0.9	97.89	92.67
1	97.76	92.78
1.001	97.60	92.65
1.01	96.98	91.59
1.1	97.17	91.99



Comparison between three losses

Loss	AR@1%	AR@1
Triplet (vanilla)	97.11	92.03
HPHN	97.76 (+0.65)	92.78 (+0.75)
S-HPHN ($\kappa=0.9$)	97.89 (+0.78)	92.67 (+0.64)

VI. Conclusion

- The HPHN loss is implemented in PPT-Net.
- Based on HPHN loss, a scale factor is introduced to propose the scaled-HPHN loss function.
- Experiments show that both HPHN and scaled-HPHN are better than the original triplet loss.

VIII. Future work

Trainable scale factor

$$L_{S-HPHN} = \left[\left\| f(d_a) - f(d_{hp}) \right\|_2^2 - \kappa D_{hn} + \gamma \right]_+$$

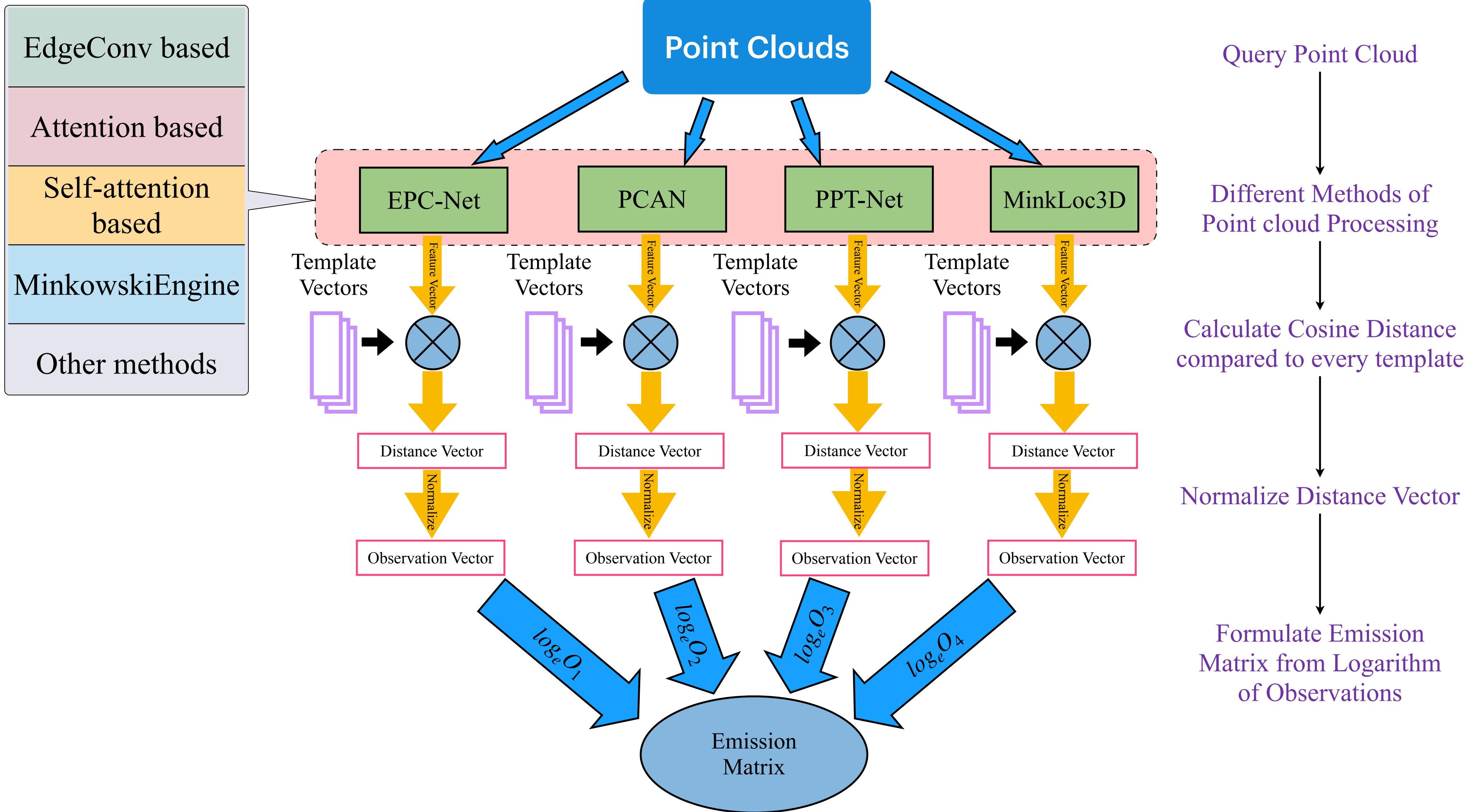
Make it trainable

Classification of 3D VPR Algorithms

EdgeConv based	Attention based	Self-attention based	MinkowskiEngine
LPD-Net EPC-Net PPT-Net	PCAN DH3D	SOE-Net PPT-Net	MinkLoc3D

Method	Parameters	FLOPs	Runtime per frame
PN_VLAD	19.78M	4.21G	20ms
PCAN	20.42M	7.73G	58ms
LPD-Net	19.81M	7.80G	28ms
MinkLoc3D	1.10M	1.81G	17ms
EPC-Net	4.70M	3.25G	20ms
PPT-Net	13.12M	3.23G	18ms

Multi-process Fusion



L & A