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l. Introduction



Visual Place Recognition (VPR)

What 1s VPR?

* For an agent (a robot or a vehicle), the ability to recognize the same place despite significant
changes 1n appearance and viewpoints.

Two pictures taken at the same place

(different seasons, weather and illumination conditions)



2D & 3D Methods for VPR

* Based on the data input, there are mainly two approaches to solving VPR,

* 2D method using images as input

* 3D method using 3D data (usually point cloud) as mnput.

Image input Point Cloud input



I1. Clarification



Point cloud

General framework for 3D VPR
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Clarification
The problem defined as follows:

NI

AOC(qg) ~ AOC(m,) % Existing database

Given a query 3D point cloud denoted as g, where

and
s ‘ o ‘
AOC: area of coverage G (.): downsampling filter 2(.)
The goal 1s to retrieve the submap m. from the i,

° ° ° b 1 h . .
database .Z that is structurally most similar to g. Approximately the same in size



Function Definition

Towards this goal, a deep network 1s devised to learn a Downsampling

Z(p)
function f(.) that maps a given downsampled 3D point 6 & >
cloud p = &(p) to a fixed size global descriptor vector

f(p) such that
d(f(p), f(p,)) < d(f(p), f(Py)),

it p 1s structurally similar to p, but dissimilar to p..

J(py)

d( .) is some distance function, e.g. Euclidean distance
function.
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Simplification

Our problem then simplifies to finding the submap

such that its global descriptor vector f(771.) gives the
minimum distance with the global descriptor vector f(g)
from the query g, 1.¢.

d(f(), f(m)) < d(f(g), f(m)),ViF *.

In practice, this can be done by the nearest neighbor search
through a list of global descriptors

{fm)liel,2,..M }

that can be computed once offline and stored in memory,
while f(g) 1s computed online.
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PointNet

Pioneer 1n Point Cloud Processing

Classification Network
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Q1 C. et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation.” 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2017): 77-85.

Segmentation Network

PointNet Architecture.

12



Hierarchical architecture
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PointNet++: Hierarchical feature learning architecture and its application.

Q1, C. et al. “PomntNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space.” NIPS (2017).
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DGCNN

Better extract local geometric features

Wang, Yue et al. “Dynamic Graph CNN for Learning on Point Clouds.” ACM Transactions on Graphics (TOG) 38 (2019): 1 - 12.
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NetVLAD

A Backbone for 2D VPR

" TWxHxD map interpreted as normalization

I NxD local descriptors x
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CNN architecture with the NetVLAD layer.

Arandjelovi¢, Relja et al. “NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.” IEEE Transactions on Pattern Analysis and

Machine Intelligence 40 (2018): 1437-1451. 16



Aggregate local descriptors

NetVLAD layer
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Chronological overview of 3D VPR

*

PointNetVLAD PCAN
(Uy et al.) (Zhao et al.)

2018 2019 2020

LPD-Net
(Liu et al.)

MinkLoc3D
(Komorowski et al.)

2021

SOE-Net
(Xia et al.)

EPC-Net
(Hui et al.)

PPT-Net
(Hui et al.)

NDT-Transformer
(Zhou et al.)
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PointNetVLAD

Pioneer of 3D VPR

Network Architecture of PointNetVLAD.

Uy, Mikaela Angelina and Gim Hee Lee. “PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition.” 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018): 4470-4479.
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PointNetVLAD Backbone

Image Convolutional Neural Network NetVLAD layer
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~ PointCloud

LPD-Net

Handcrafted features, coordinate & feature space
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Liu, Zhe et al. “LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis.” 2019 IEEE/CVF International

Conference on Computer Vision (ICCV) (2019): 2831-2840.
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PCAN

The first one to introduce the attention mechanism

Local features extraction
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MinkLoc3D

A novel backbone for 3D VPR
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Komorowski, Jacek. “MinkLoc3D: Point Cloud Based Large-Scale Place Recognition.” 2021 IEEE Winter Conference on Applications of Computer
Vision (WACYV) (2021): 1789-1798.
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SOE-Net

Introduce self-attention & a new loss function
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Xia, Yan et al. “SOE-Net: A Self-Attention and Orientation Encoding Network for Point Cloud based Place Recognition.” 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2021): 11343-11352.
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A New Loss Function for VPR:
Hardest Positive Hardest Negative quadruplet loss (HPHN loss)

2

Lypgn = l f(5a) —f(5hp) — dy, + 7’]

2

_|_

26



EPC-Net

ProxyConv & grouped VLAD
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Hui, Le et al. “Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition.” IEEE Transactions on Image Processing 31 (2022):
1258-1270.



PPT-Net

A master of various algorithms

The pipeline of the pyramid point cloud transformer network (PPT-Net)

Hui, Le et al. “Pyramid Point Cloud Transformer for Large-Scale Place Recognition.” 2021 IEEE/CVF International Conference on Computer Vision
(ICCV) (2021): 6078-6087.

28



V. Methodology




HPHN quadruplet loss

Hardest Positive Hardest Negative

e For alazy quadruplet Q; = (d,, {d,}, {d,},dy;),
where d_, 1is the anchor point cloud,
{d,} 1s a collection of y positive point clouds,

{d,} is a collection of ¢ negative point clouds,
dy is a randomly sampled point cloud, structurally dissimilar to d,, d, and d,,.
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HPHN quadruplet loss

o The hardest positive point cloud dhp 1s the least structurally similar to the anchor point cloud.

* The hardest negative point cloud 1s the most structurally similar to the anchor point cloud or the
randomly sampled point cloud d**.

fffff
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Ilustration of HPHN loss
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HPHN quadruplet loss

* In conclusion, the final HPHN quadruplet loss can be formulated as:

2

LHPHN — ||f<da) _f<dhp> _ Dhn +y
2




Scaled-HPHN loss

LHPHN —

LS—HPHN —

Scaled-HPHN quadruplet loss
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V. Experiments



HPHN in PPT-Net

Introduce HPHN to PPT-Net

Loss AR@1% AR@1

Triplet (vanilla) 97.11 92.03

HPHN 97.76 (+0.65) 92.78 (+0.75)
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Ablation study

K AR@1% AR@1
0.9 97.89 92.67
| 97.76 92.78
1.001 97.60 92.65
1.01 96.98 91.59
1.1 97.17 91.99
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Comparison between three losses

Loss AR@1% AR@]1
Triplet (vanilla) 97.11 92.03
HPHN 97.76 92.78 (+0.75)
S-HPHN (x=0.9) 97.89 (+0.78) 92.67
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VI. Conclusion



e The HPHN loss 1s implemented in PPT-Net.

 Based on HPHN loss, a scale factor 1s introduced to propose the scaled-HPHN loss function.

e Experiments show that both HPHN and scaled-HPHN are better than the original triplet loss.
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VII. Future work



Trainable scale factor

Ls_ppan = l f(da> _f(dhp) — kD, + }’]

Make 1t trainable
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Classification of 3D VPR Algorithms

EdgeConyv based Attention based Self-attention based | MinkowskiEngine
LPD-Net
EPC-Net f)(lj{él[\)l i(lzg-—ll\\ll:tt MinkLoc3D
PPT-Net
Method Parameters FLOPs Runtime
per frame
PN VLAD 19.78M 4.21G 20ms
PCAN 20.42M 7.73G 58ms
LPD-Net 19.81M 7.80G 28ms
MinkLoc3D 1.10M 1.81G 17ms
EPC-Net 4.70M 3.25G 20ms
PPT-Net 13.12M 3.23G 18ms

44



EdgeConv based

Attention based

Self-attention
based

MinkowskiEngine
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Vectors

Other methods
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